Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire

Abstract

Semiconductor nanowires show promise for many device applications1,2,3, but controlled doping with electronic and magnetic impurities remains an important challenge4,5,6,7,8. Limitations on dopant incorporation have been identified in nanocrystals9, raising concerns about the prospects for doping nanostructures9,10. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures. Recently, we showed that atom probe tomography can be used to determine the composition of isolated nanowires11,12. Here, we report the first direct measurements of dopant concentrations in arbitrary regions of individual nanowires. We find that differences in precursor decomposition rates between the liquid catalyst and solid nanowire surface give rise to a heavily doped shell surrounding an underdoped core. We also present a thermodynamic model that relates liquid and solid compositions to dopant fluxes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atomically resolved three-dimensional reconstruction of a germanium nanowire.
Figure 2: Distribution of dopant atoms.
Figure 3: Dopant incorporation pathways and distribution.
Figure 4: Core phosphorus concentration versus temperature and precursor ratio.

Similar content being viewed by others

References

  1. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  CAS  Google Scholar 

  2. Thelander, C. et al. Nanowire-based one-dimensional electronics. Mater. Today 9, 28–35 (2006).

    Article  CAS  Google Scholar 

  3. Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nature Mater. 6, 841–850 (2007).

    Article  CAS  Google Scholar 

  4. Cui, Y., Duan, X. F., Hu, J. T. & Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213–5216 (2000).

    Article  CAS  Google Scholar 

  5. Gudiksen, M. S. et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  Google Scholar 

  6. Tutuc, E., Chu, J. O., Ott, J. A. & Guha, S. Doping of germanium nanowires grown in presence of PH3 . Appl. Phys. Lett. 89, 263101 (2006).

    Article  Google Scholar 

  7. Lew, K. K. et al. Structural and electrical properties of trimethylboron-doped silicon nanowires. Appl. Phys. Lett. 85, 3101–3103 (2004).

    Article  CAS  Google Scholar 

  8. Stamplecoskie, K. G., Ju, L., Farvid, S. S. & Radovanovic, P. V. General control of transition-metal-doped GaN nanowire growth: Toward understanding the mechanism of dopant incorporation. Nano Lett. 8, 2674–2681 (2008).

    Article  CAS  Google Scholar 

  9. Erwin, S. C. et al. Doping semiconductor nanocrystals. Nature 436, 91–94 (2005).

    Article  CAS  Google Scholar 

  10. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  11. Perea, D. E. et al. Three-dimensional nanoscale composition mapping of semiconductor nanowires. Nano Lett. 6, 181–185 (2006).

    Article  CAS  Google Scholar 

  12. Perea, D. E. et al. Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl. Phys. A 85, 271–275 (2006).

    Article  CAS  Google Scholar 

  13. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  14. Cui, Y. et al. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    Article  CAS  Google Scholar 

  15. Duan, X. F. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  16. Perea, D. E. et al. Tomographic analysis of dilute impurities in semiconductor nanostructures. J. Solid State Chem. 181, 1642–1649 (2008).

    Article  CAS  Google Scholar 

  17. Gault, B. et al. Estimation of the reconstruction parameters for atom probe tomography. Microsc. Microanal. 14, 296–305 (2008).

    Article  CAS  Google Scholar 

  18. Lauhon, L. J., Gudiksen, M. S., Wang, C. L. & Lieber, C. M. Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420, 57–61 (2002).

    Article  CAS  Google Scholar 

  19. Kamins, T. I., Li, X. & Williams, R. S. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503–506 (2004).

    Article  CAS  Google Scholar 

  20. Greytak, A. B., Lauhon, L. J., Gudiksen, M. S. & Lieber, C. M. Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl. Phys. Lett. 84, 4176–4178 (2004).

    Article  CAS  Google Scholar 

  21. Jang, S. M., Liao, K. & Reif, R. Phosphorus doping of epitaxial Si and Si1–xGex at very low pressure. Appl. Phys. Lett. 63, 1675–1677 (1993).

    Article  CAS  Google Scholar 

  22. Sodervall, U. & Friesel, M. Diffusion of silicon and phosphorus into germanium as studied by secondary ion mass spectrometry. Defect. Diffus. Forum 143, 1053–1058 (1997).

    Article  Google Scholar 

  23. Fistul, V. I. et al. Solubility and segregation of electrically active phosphorus in Ge. Inorg. Mater. 11, 457–459 (1975).

    Google Scholar 

  24. Schmidt, V., Senz, S. & Gosele, U. Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor–liquid–solid mechanism. Phys. Rev. B 75, 045335 (2007).

    Article  Google Scholar 

  25. Aziz, M. J. Model for solute redistribution during rapid solidification. J. Appl. Phys. 53, 1158–1168 (1982).

    Article  CAS  Google Scholar 

  26. Coates, D. E. Diffusion-controlled precipitate growth in ternary systems 1. Metall. Trans. 3, 1203–1212 (1972).

    Article  CAS  Google Scholar 

  27. Roper, S. M. et al. Steady growth of nanowires via the vapor–liquid–solid method. J. Appl. Phys. 102, 034304 (2007).

    Article  Google Scholar 

  28. Radovanovic, P. V., Stamplecoskie, K. G. & Pautler, B. G. Dopant ion concentration dependence of growth and faceting of manganese-doped GaN nanowires. J. Am. Chem. Soc. 129, 10980–10981 (2007).

    Article  CAS  Google Scholar 

  29. Allen, J. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech. 3, 168–173 (2008).

    Article  CAS  Google Scholar 

  30. Clauws, P. Oxygen related defects in germanium. Mater. Sci. Eng. B 36, 213–220 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Office of Naval Research and the National Science Foundation through the CAREER and NIRT programs. D.E.P. acknowledges the support of a Ford Foundation fellowship, J.L.L. acknowledges the support of a NSF Graduate Fellowship, E.J.S. acknowledges support of a National Defense Science and Engineering Graduate Fellowship, and L.J.L. acknowledges support of an Alfred P. Sloan Research Fellowship. We acknowledge the NUANCE and NUCAPT facilities for the use of instrumentation and D. Isheim for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.E.P. performed the atom probe experiments and data analysis. E.R.H. and J.L.F. synthesized the nanowires. E.R.H. performed TEM analysis. E.J.S and P.W.V. developed the growth model. L.J.L. coordinated the design and execution of the experiments. D.E.P. and L.J.L. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Lincoln J. Lauhon.

Supplementary information

Supplementary Information

Supplementary Information (PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perea, D., Hemesath, E., Schwalbach, E. et al. Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nature Nanotech 4, 315–319 (2009). https://doi.org/10.1038/nnano.2009.51

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing