Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An electric current spike linked to nanoscale plasticity

Abstract

The increase in semiconductor conductivity that occurs when a hard indenter is pressed into its surface has been recognized for years1,2,3,4,5, and nanoindentation experiments have provided numerous insights into the mechanical properties of materials. In particular, such experiments have revealed so called pop-in events, where the indenter suddenly enters deeper into the material without any additional force being applied; these mark the onset of the elastic–plastic transition6,7,8,9,10,11. Here, we report the observation of a current spike—a sharp increase in electrical current followed by immediate decay to zero at the end of the elastic deformation—during the nanoscale deformation of gallium arsenide. Such a spike has not been seen in previous nanoindentation experiments on semiconductors1,2,3,4,5, and our results, supported by ab initio calculations, suggest a common origin for the electrical and mechanical responses of nanodeformed gallium arsenide. This leads us to the conclusion that a phase transition is the fundamental cause of nanoscale plasticity in gallium arsenide12, and the discovery calls for a revision of the current dislocation-based understanding of nanoscale plasticity6,7,8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nano-electrical contact resistance measurements during nanoindentation.
Figure 2: The simultaneous electrical and mechanical responses of nanodeformed GaAs.
Figure 3: Non-dislocation origin of the pop-in event and current spike recorded for GaAs.
Figure 4: Ab initio calculations of the nanodeformed (100)GaAs crystals.
Figure 5: Schematic of the electrical (current spike) and mechanical (pop-in) events displayed by nanodeformed GaAs.

Similar content being viewed by others

References

  1. Gerk, A. P. & Tabor, D. Indentation hardness and semiconductor–metal transition of germanium and silicon. Nature 271, 732–733 (1978).

    Article  CAS  Google Scholar 

  2. Clarke, D. R., Kroll, M. C., Kirchner, P. D., Cook, R. F. & Hockey, B. J. Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156–2159 (1988).

    Article  CAS  Google Scholar 

  3. Gilman, J. J. Insulator–metal transitions at microindentations. J. Mater. Res. 7, 535–538 (1992).

    Article  CAS  Google Scholar 

  4. Bradby, J. E., Williams, J. S. & Swain, M. V. In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).

    Article  Google Scholar 

  5. Ruffell, S., Bradby, J. E., Fujisawa, N. & Williams, J. S. Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 101, 083531 (2007).

    Article  Google Scholar 

  6. Corcoran, S. G., Colton, R. J., Lilleodden, E. T. & Gerberich, W. W. Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057–R16060 (1997).

    Article  CAS  Google Scholar 

  7. Li, J., Van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).

    Article  CAS  Google Scholar 

  8. Schuh, C. A., Mason, J. K. & Lund, A. C. Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nature Mater. 4, 617–621 (2005).

    Article  CAS  Google Scholar 

  9. Szlufarska, I., Nakano, A. & Vashista, P. A. Crossover in the mechanical response of nano-crystalline ceramics. Science 309, 911–914 (2005).

    Article  CAS  Google Scholar 

  10. Gerberich, W. & Mook, W. A new picture of plasticity. Nature Mater. 4, 577–578 (2005).

    Article  CAS  Google Scholar 

  11. Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nature Mater. 5, 697–702 (2006).

    Article  CAS  Google Scholar 

  12. Chrobak, D., Nordlund, K. & Nowak, R. Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98, 045502 (2007).

    Article  CAS  Google Scholar 

  13. Giannakopoulos, A. E. & Suresh, S. Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999).

    Article  CAS  Google Scholar 

  14. Sridhar, S., Giannakopoulos, A. E., Suresh, S. & Ramamurty, U. Electrical response during indentation of piezoelectric materials: A new method for material characterization. J. Appl. Phys. 85, 380–388 (1999).

    Article  CAS  Google Scholar 

  15. Le Bourhis, E. & Patriarche, E. TEM-nanoindentation studies of semiconducting structures. Micron 38, 377–389 (2007).

    Article  CAS  Google Scholar 

  16. Leipner, H. S., Lorentz, D., Zecker, A., Lei, H. & Grau, P. Nanoindentation pop-in effect in semiconductors. Physica B 308–310, 446–449 (2001).

    Article  Google Scholar 

  17. Bradby, J. E., Williams, J. S., Wong-Leung, J., Swain, M. V. & Munroe, P. Mechanical deformation of InP and GaAs by spherical indentation. Appl. Phys. Lett. 78, 3235–3237 (2001).

    Article  CAS  Google Scholar 

  18. Mujica, A., Rubio, A., Munoz, A. & Needs, R. J. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 75, 863–912 (2003).

    Article  CAS  Google Scholar 

  19. Bourret, E. D. et al. Silicon and indium doping of GaAs: Measurements of the effect of doping on mechanical behavior and relation with dislocation formation. J. Cryst. Growth 85, 275–281 (1987).

    Article  CAS  Google Scholar 

  20. Williams, J. S., Chen, Y., Wong-Leung, J., Kerr, A. & Swain, M. V. Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. J. Mater. Res. 14, 2338–2343 (1999).

    Article  CAS  Google Scholar 

  21. Leipner, H. S., Lorentz, D., Zeckzer, A. & Grau, P. Dislocation-related pop-in in gallium arsenide. Phys. Stat. Sol. 183, R4–R6 (2001).

    Article  CAS  Google Scholar 

  22. Lorentz, D. et al. Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  23. Woodall, J. M. et al. Fermi-level pinning by misfit dislocations at GaAs interfaces. Phys. Rev. Lett. 51, 1783–1786 (1983).

    Article  CAS  Google Scholar 

  24. Ovsyannikov, S. V. & Shchennikov, V. V. Observation of a new high-pressure semimetal phase of GaAs from pressure dependence of thermopower. J. Phys. Condens. Matter 18, L551–L557 (2006).

    Article  CAS  Google Scholar 

  25. Nowak, R., Sekino, T., Maruno, S. & Niihara, K. The deformation of sapphire induced by a spherical indentation on the (1010) plane. Appl. Phys. Lett. 68, 1063–1065 (1996).

    Article  CAS  Google Scholar 

  26. Nowak, R. et al. Peculiar surface deformation of sapphire: Numerical simulation of nanoindentation. Appl. Phys. Lett. 83, 5214–5216 (2003).

    Article  CAS  Google Scholar 

  27. Valentini, P., Gerberich, W. W. & Dumitrica, T. Phase-transformation plasticity response in uniaxially compressed silicon nanospheres. Phys. Rev. Lett. 99, 175701 (2007).

    Article  CAS  Google Scholar 

  28. Baroni, S., de Gironcoli, S., Corso, A. D. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

  29. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  30. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Academy of Finland under FINNANO research project NANOTOMO and NAKAMA-EXT., Research Foundation of Helsinki University of Technology, while the nanoECR measurements were carried out courtesy of Hysitron, Inc. at their laboratories. R.N. acknowledges W.W. Gerberich, I. Szlufarska and C.A. Schuh for their careful reading of the initial version of the manuscript and for providing stimulating comments, as well as special thanks to F. Yoshida and R. Tenne for invaluable discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.N. conceived the concepts and designed the research project. D.C. and S.N. carried out the calculations and analysed the compatibility of theoretical and experimental data. D.V. and M.B. carried out the experiments and analysed the output. A.T. and M.P. designed and fabricated GaAs specimens. R.N., M.B. and D.C. wrote the paper. All authors discussed the results.

Corresponding author

Correspondence to Roman Nowak.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1086 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, R., Chrobak, D., Nagao, S. et al. An electric current spike linked to nanoscale plasticity. Nature Nanotech 4, 287–291 (2009). https://doi.org/10.1038/nnano.2009.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing