Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes

Abstract

Nanoscale sensing elements offer promise for single-molecule analyte detection in physically or biologically constrained environments. Single-walled carbon nanotubes have several advantages when used as optical sensors1,2,3, such as photostable near-infrared emission for prolonged detection through biological media2,4,5 and single-molecule sensitivity6. Molecular adsorption can be transduced into an optical signal by perturbing the electronic structure of the nanotubes7. Here, we show that a pair of single-walled nanotubes provides at least four modes that can be modulated to uniquely fingerprint agents by the degree to which they alter either the emission band intensity or wavelength. We validate this identification method in vitro by demonstrating the detection of six genotoxic analytes, including chemotherapeutic drugs and reactive oxygen species, which are spectroscopically differentiated into four distinct classes, and also demonstrate single-molecule sensitivity in detecting hydrogen peroxide. Finally, we detect and identify these analytes in real time within live 3T3 cells, demonstrating multiplexed optical detection from a nanoscale biosensor and the first label-free tool to optically discriminate between genotoxins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multimodal detection of four reaction pathways.
Figure 2: Mechanistic studies of SWNT–genotoxin reactions.
Figure 3: Single-molecule H2O2 detection.
Figure 4: Real-time multiplexed detection of genotoxins in live mammalian cells.

Similar content being viewed by others

References

  1. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–92 (2005).

    Article  Google Scholar 

  2. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  3. Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  Google Scholar 

  4. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  Google Scholar 

  5. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  Google Scholar 

  6. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007).

    Article  Google Scholar 

  7. Dukovic, G. et al. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004).

    Article  Google Scholar 

  8. Choi, J. H. & Strano, M. S. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90, 223114 (2007).

    Article  Google Scholar 

  9. Rhee, S. G. H2O2, a necessary evil for cell signaling. Science 312, 1882–1883 (2006).

    Article  Google Scholar 

  10. Povirk, L. F. & Shuker, D. E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res. Rev. Genet. 318, 205–226 (1994).

    Article  Google Scholar 

  11. Delalande, O., Malina, J., Brabec, V. & Kozelka, J. Chiral differentiation of DNA adducts formed by enantiomeric analogues of antitumor cisplatin is sequence-dependent. Biophys. J. 88, 4159–4169 (2005).

    Article  Google Scholar 

  12. Tilby, M. J. et al. A monofunctional derivative of melphalan: Preparation, DNA alkylation products and determination of the specificity of monoclonal antibodies that recognize melphalan–DNA adducts. Chem. Res. Toxicol. 11, 1162–1168 (1998).

    Article  Google Scholar 

  13. Lovell, M. A. & Markesbery, W. R. Ratio of 8-hydroxyguanine in intact DNA to free 8-hydroxyguanine is increased in Alzheimer disease ventricular cerebrospinal fluid. Arch. Neurol. 58, 392–396 (2001).

    Article  Google Scholar 

  14. Hamilton, M. L. et al. Does oxidative damage to DNA increase with age? Proc. Natl Acad. Sci. USA 98, 10469–10474 (2001).

    Article  Google Scholar 

  15. Kawanishi, S., Hiraku, Y., Murata, M. & Oikawa, S. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic. Biol. Med. 32, 822–832 (2002).

    Article  Google Scholar 

  16. Imlay, J. A. Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418 (2003).

    Article  Google Scholar 

  17. Aruoma, O. I., Halliwell, B., Gajewski, E. & Dizdaroglu, M. Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem. J. 273, 601–604 (1991).

    Article  Google Scholar 

  18. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  Google Scholar 

  19. Jackson, E. J. A User's Guide to Principal Components (John Wiley & Sons, 2003).

    Google Scholar 

  20. Song, C. H., Pehrsson, P. E. & Zhao, W. Recoverable solution reaction of HiPco carbon nanotubes with hydrogen peroxide. J. Phys. Chem. B 109, 21634–21639 (2005).

    Article  Google Scholar 

  21. Tu, X. M., Pehrsson, P. E. & Zhao, W. Redox reaction of DNA-encased HiPCO carbon nanotubes with hydrogen peroxide: A near infrared optical sensitivity and kinetics study. J. Phys. Chem. C 111, 17227–17231 (2007).

    Article  Google Scholar 

  22. Burrows, C. J. & Muller, J. G. Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1151 (1998).

    Article  Google Scholar 

  23. Duguid, J., Bloomfield, V. A., Benevides, J. & Thomas, G. J. Raman spectroscopy of DNA-metal complexes. 1. Interactions and conformational effects of the divalent-cations — Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd and Cd. Biophys. J. 65, 1916–1928 (1993).

    Article  Google Scholar 

  24. Lloyd, D. R. & Phillips, D. H. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat. Res. Fund. Mol. M. 424, 23–36 (1999).

    Article  Google Scholar 

  25. Yang, J. L., Wang, L. C., Chang, C. Y. & Liu, T. Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen. 33, 194–201 (1999).

    Article  Google Scholar 

  26. Kerssemakers, J. W. J. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  Google Scholar 

  27. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  Google Scholar 

  28. Cherukuri, P., Bachilo, S. M., Litovsky, S. H. & Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004).

    Article  Google Scholar 

  29. Heller, D. A., Baik, S., Eurell, T. E. & Strano, M. S. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17, 2793–2799 (2005).

    Article  Google Scholar 

  30. Gaetani, G. F. et al. Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87, 1595–1599 (1996).

    Google Scholar 

  31. Jin, H., Heller, D. A. & Strano, M. S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 8, 1577–1585 (2008).

    Article  Google Scholar 

  32. Jin, H. et al. Divalent ion and thermally induced DNA conformational polymorphism on single-walled carbon nanotubes. Macromolecules 40, 6731–6739 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

M.S.S is grateful for a Beckman Young Investigator Award and a National Science Foundation (NSF) Career Award. This work was funded under the NSF Nanoscale Interdisciplinary Research Team on single molecule detection in living cells using carbon nanotube optical probes. The authors thank S. McMasters (University of Illinois) for cell culture assistance, and C. Fantini, A. Jain, A. Moll and J. Ossyra for experimental assistance. We also thank S. Tannenbaum, G. Wogan and L. Trudel and acknowledge a seed grant from the Center for Environmental Health Sciences at MIT. Partial support was provided by the National Cancer Institute (U54-CA119342-01) to the Siteman Center of Cancer Nanotechnology Excellence, through the University of Illinois Center for Nanoscale Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

D.H. and M.S. originated the concept for the paper and the experimental validation. D.H., H.J., B.M., D.P., B.M., T.-K.Y., P.J. and C.H. all assisted in the experiments. D.H., B.M., D.P., B.M., T.-K.Y., P.J. and C.H. performed the data analysis. S.S., T.H., C.H. and P.J. contributed materials/specific analysis tools and provided useful discussions. D.H. and M.S. co-wrote the paper with input from S.S.

Corresponding author

Correspondence to Michael S. Strano.

Supplementary information

Supplementary Information

Supplementary Information (PDF 661 kb)

Supplementary Information

Supplementary Movie (MOV 722 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, D., Jin, H., Martinez, B. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech 4, 114–120 (2009). https://doi.org/10.1038/nnano.2008.369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.369

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing