Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

True solutions of single-walled carbon nanotubes for assembly into macroscopic materials

Abstract

Translating the unique characteristics of individual single-walled carbon nanotubes into macroscopic materials such as fibres and sheets has been hindered by ineffective assembly. Fluid-phase assembly is particularly attractive, but the ability to dissolve nanotubes in solvents has eluded researchers for over a decade. Here, we show that single-walled nanotubes form true thermodynamic solutions in superacids, and report the full phase diagram, allowing the rational design of fluid-phase assembly processes. Single-walled nanotubes dissolve spontaneously in chlorosulphonic acid at weight concentrations of up to 0.5wt%, 1,000 times higher than previously reported in other acids. At higher concentrations, they form liquid-crystal phases that can be readily processed into fibres and sheets of controlled morphology. These results lay the foundation for bottom-up assembly of nanotubes and nanorods into functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase diagram of SWNTs in superacids and cross-polarized light micrographs showing the effect of solvent quality and SWNT concentration on microstructure.
Figure 2: Cryo-TEM image of SWNTs (0.134 vol%) in chlorosulphonic acid.
Figure 3: Dispersions of SWNTs (10.8 vol%) in sulphuric acid processed using different coagulation conditions.
Figure 4: Fibre spun from 8.5 vol% SWNTs in pure chlorosulphonic acid and coagulated in 96% aqueous sulphuric acid.

References

  1. Lieber, C. M. & Wang, Z. L. Functional nanowires. MRS Bull. 32, 99–108 (2007).

    Article  CAS  Google Scholar 

  2. Yu, G., Cao, A. & Lieber, C. M. Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nature Nanotech. 2, 372–377 (2007).

    Article  CAS  Google Scholar 

  3. Baughman, R. H. Materials science—putting a new spin on carbon nanotubes. Science 290, 1310–1311 (2000).

    Article  CAS  Google Scholar 

  4. Chae, H. G. & Kumar, S. Materials science—making strong fibers. Science 319, 908–909 (2008).

    Article  CAS  Google Scholar 

  5. Dalton, A. B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).

    Article  CAS  Google Scholar 

  6. Duggal, R., Hussain, F. & Pasquali, M. Self-assembly of single-walled carbon nanotubes into a sheet by drop drying. Adv. Mater. 18, 29–34 (2006).

    Article  CAS  Google Scholar 

  7. Ericson, L. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447–1450 (2004).

    Article  CAS  Google Scholar 

  8. Li, Q. W., Zhu, Y. T. T., Kinloch, I. A. & Windle, A. H. Self-organization of carbon nanotubes in evaporating droplets. J. Phys. Chem. B 110, 13926–13930 (2006).

    Article  CAS  Google Scholar 

  9. Sreekumar, T. V. et al. Single-wall carbon nanotube films. Chem. Mater. 15, 175–178 (2003).

    Article  CAS  Google Scholar 

  10. Vigolo, B. et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 1331–1334 (2000).

    Article  CAS  Google Scholar 

  11. Zhang, S. J., Koziol, K. K. K., Kinloch, I. A. & Windle, A. H. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. Small 4, 1217–1222 (2008).

    Article  CAS  Google Scholar 

  12. Li, L. S., Marjanska, M., Park, G. H. J., Pines, A. & Alivisatos, A. P. Isotropic-liquid crystalline phase diagram of a CdSe nanorod solution. J. Chem. Phys. 120, 1149–1152 (2004).

    Article  CAS  Google Scholar 

  13. Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996).

    Article  CAS  Google Scholar 

  14. Hudson, J. L., Casavant, M. J. & Tour, J. M. Water-soluble, exfoliated, nonroping single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 11158–11159 (2004).

    Article  CAS  Google Scholar 

  15. Penicaud, A., Poulin, P., Derre, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

    Article  CAS  Google Scholar 

  16. Bergin, S. D. et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 20, 1876–1881 (2008).

    Article  CAS  Google Scholar 

  17. Song, W. H. & Windle, A. H. Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38, 6181–6188 (2005).

    Article  CAS  Google Scholar 

  18. Zhang, S. J., Kinloch, I. A. & Windle, A. H. Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett. 6, 568–572 (2006).

    Article  Google Scholar 

  19. Davis, V. A. et al. Phase behavior and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).

    Article  CAS  Google Scholar 

  20. Badaire, S. et al. Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 17, 1673–1676 (2005).

    Article  CAS  Google Scholar 

  21. Islam, M. F. et al. Nematic nanotube gels. Phys. Rev. Lett. 92, 088303 (2004).

    Article  CAS  Google Scholar 

  22. Ramesh, S. et al. Dissolution of pristine single-walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004).

    Article  CAS  Google Scholar 

  23. Rai, P. K. et al. Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J. Am. Chem. Soc. 128, 591–595 (2006).

    Article  CAS  Google Scholar 

  24. Green, M. J., Parra-Vasquez, A. N. G., Behabtu, N. & Pasquali, M. Modeling the phase behavior of polydisperse rigid rods with attractive interactions with applications to single-walled carbon nanotubes in superacids. J. Chem. Phys. 131, 084901 (2009).

    Article  Google Scholar 

  25. Flory, P. J. Phase equilibria in solutions of rod-like particles. Proc. R. Soc. London A 234, 73–89 (1956).

    Article  CAS  Google Scholar 

  26. Khokhlov, A. R. in Liquid Crystallinity in Polymers (ed. Ciferri, A.) 97–129 (VCH Publishers, 1991).

    Google Scholar 

  27. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. NY Acad. Sci. 51, 627–659 (1949).

    Article  CAS  Google Scholar 

  28. Speranza, A. & Sollich, P. Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity. Phys. Rev. E 67, 061702 (2003).

    Article  Google Scholar 

  29. Wensink, H. H. & Vroege, G. J. Isotropic-nematic phase behavior of length-polydisperse hard rods. J. Chem. Phys. 119, 6868–6882 (2003).

    Article  CAS  Google Scholar 

  30. Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic Press, 1992).

    Google Scholar 

  31. Chapot, D., Bocquet, L. & Trizac, E. Interaction between charged anisotropic macromolecules: application to rod-like polyelectrolytes. J. Chem. Phys. 120, 3969–3982 (2004).

    Article  CAS  Google Scholar 

  32. Dogic, Z., Purdy, K. R., Grelet, E., Adams, M. & Fraden, S. Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer dextran. Phys. Rev. E 69, 051702 (2004).

    Article  Google Scholar 

  33. Papkov, S. Liquid crystalline order in solutions of rigid-chain polymers. Adv. Polym. Sci. 59, 75–102 (1984).

    Article  CAS  Google Scholar 

  34. Leonard, A. D. et al. Nanoengineered carbon scaffolds for hydrogen storage. J. Am. Chem. Soc. 131, 723–728 (2009).

    Article  CAS  Google Scholar 

  35. Neimark, A. V., Ruetsch, S., Kornev, K. G. & Ravikovitch, P. I. Hierarchical pore structure and wetting properties of single-wall carbon nanotube fibers. Nano Lett. 3, 419–423 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of R. Duggal, S. Ramesh, L. Ericson, C. Lupu, E. Whitsitt, R. Pinnick, C. Kittrell, W.-F. Hwang, H. Schmidt, B. Yakobson, J. Tour, K. Winey, K. Strong and B. Maruyama. Funding was provided by the Office of Naval Research under grant no. N00014-01-1-0789, AFOSR grant no. FA9550-06-1-0207, AFRL agreements FA8650-07-2-5061 and 07-S568-0042-01-C1, NSF CAREER, USA-Israel Binational Science Foundation, and the Evans-Attwell Welch Postdoctoral Fellowship. Cryo-TEM imaging was performed at the Hannah and George Krumholz Laboratory for Advanced Microscopy, part of the Technion Project on Complex Liquids, Nanostructure and Macromolecules.

Author information

Authors and Affiliations

Authors

Contributions

V.A.D., M.J.G., M.P., A.N.G.P.V. and N.B. analysed the data and co-wrote the paper. M.J.G. and M.P. performed theoretical analysis and modelling. V.A.D., A.N.G.P.V., M.J.G., P.K.R., N.B., V.P. and W.Z. performed phase boundary experiments and A.N.G.P.V., N.B., M.J.G., R.D.B. and H.F. performed fibre and film experiments, all with direction and analysis from W.W.A., R.H., J.F., R.E.S. and M.P. J.S., E.K. and A.N.G.P.V. performed cryo-TEM experiments with direction and analysis from Y.C., Y.T. and M.P. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Matteo Pasquali.

Supplementary information

Supplementary information

Supplementary information (PDF 5748 kb)

Supplementary information

Supplementary information (WMV 8173 kb)

Supplementary information

Supplementary information (PPS 769 kb)

Supplementary information

Supplementary movie 1 (WMV 4519 kb)

Supplementary information

Supplementary movie 2 (WMV 8757 kb)

Supplementary information

Supplementary movie 3 (WMV 10146 kb)

Supplementary information

Supplementary information (PPS 7434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, V., Parra-Vasquez, A., Green, M. et al. True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nature Nanotech 4, 830–834 (2009). https://doi.org/10.1038/nnano.2009.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing