Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembly of soft nanoparticles with tunable patchiness

Abstract

Details of the forces between nanoparticles determine the ways in which the nanoparticles can self-assemble into larger structures. The use of directed interactions has led to new concepts in self-assembly such as asymmetric dendrons1,2, Janus particles3, patchy colloids4,5,6 and colloidal molecules7. Recent models that include attractive regions or ‘patches’ on the surface of the nanoparticles predict a wealth of intricate modes of assembly8,9,10,11,12. Interactions between such particles are also important in a range of phenomena including protein aggregation13,14 and crystallization15, re-entrant phase transitions16,17,18, assembly of nanoemulsions19 and the organization of nanoparticles into nanowires20. Here, we report the synthesis of 6-nm nanoparticles with dynamic hydrophobic patches and show that they can form reversible self-assembled structures in aqueous solution that become topologically more connected upon dilution. The organization is based on guest–host supramolecular chemistry with the nanoparticles composed of a hydrophobic dendrimer host molecule and water-soluble hydrophilic guest molecules. The work demonstrates that subtle changes in hierarchal composition and/or concentration can dramatically change mesoscopic ordering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular building blocks that make up the patchy nanoparticles and their assemblies.
Figure 2: Translational diffusion coefficients measured by 1H-DOSY NMR (in D2O, left axis) and shear viscosity measurements (in H2O, right axis).
Figure 3: 200 kV cryo-electron projection images of the patchy particles.
Figure 4: Analysing the reversible networks by determining their fractal dimension.
Figure 5: Light-scattering experiments performed on the reversible networks of patchy nanoparticles.

Similar content being viewed by others

References

  1. Maraval, V. et al. Rapid synthesis of phosphorus-containing dendrimers with controlled molecular architectures: first example of surface-block, layer-block and segment-block dendrimers issued from the same dendron. J. Am. Chem. Soc. 122, 2499–2511 (2000).

    Article  CAS  Google Scholar 

  2. Grayson, S. M. & Fréchet, J.-M. J. Synthesis and surface functionalization of aliphatic polyether dendrons. J. Am. Chem. Soc. 122, 10335–10344 (2000).

    Article  CAS  Google Scholar 

  3. Roh, K.-H., Martin, D. C. & Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nature Mater. 4, 759–763 (2005).

    Article  CAS  Google Scholar 

  4. Zheng, R., Liu, G. & Yan, X. Polymer nano- and microspheres with bumpy and chain-segregated surfaces. J. Am. Chem. Soc. 127, 15358–15359 (2005).

    Article  CAS  Google Scholar 

  5. Breen, T. L., Tien, J., Oliver, S. R. J., Hadzic, T. & Whitesides, G. M. Design and self-assembly of open, regular, 3D mesostructures. Science 284, 948–951 (1999).

    Article  CAS  Google Scholar 

  6. Cho, Y.-S. et al. Self-organization of bidisperse colloids in water droplets. J. Am. Chem. Soc. 127, 15968–15975 (2005).

    Article  CAS  Google Scholar 

  7. Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  8. Zhang, Z. & Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 4, 1407–1413 (2004).

    Article  CAS  Google Scholar 

  9. Doye, J. P. K. et al. Controlling crystallization and its absence: proteins, colloids and patchy models. Phys. Chem. Chem. Phys. 9, 2197–2205 (2007).

    Article  CAS  Google Scholar 

  10. Kern, N. & Frenkel, D. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction. J. Chem. Phys. 118, 9882–9889 (2003).

    Article  CAS  Google Scholar 

  11. Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E. & Sciortino, F. Phase diagram of patchy colloids: towards empty liquids. Phys. Rev. Lett. 97, 168301 (2006).

    Article  Google Scholar 

  12. Huisman, B. A. H., Bolhuis, P. G. & Fasolino, A. Phase transition to bundles of flexible supramolecular polymers. Phys. Rev. Lett. 100, 188301 (2008).

    Article  CAS  Google Scholar 

  13. Lomakin, A., Asherie, N. & Benedek, G. B. Aeolotopic interactions of globular proteins. Proc. Natl Acad. Sci. USA 96, 9465–9468 (1999).

    Article  CAS  Google Scholar 

  14. van der Linden, E. & Venema, P. Self-assembly and aggregation of proteins. Curr. Opin. Colloid Interface Sci. 12, 158–165 (2007).

    Article  CAS  Google Scholar 

  15. De Michele, C., Gabrielli, S., Tartaglia, P. & Sciortino, F. Dynamics in the presence of attractive patchy interactions. J. Phys. Chem. B 110, 8064–8079 (2006).

    Article  CAS  Google Scholar 

  16. Eckert, T. & Bartsch, E. Re-entrant glass transition in a colloid–polymer mixture with depletion. Phys. Rev. Lett. 89, 125701 (2002).

    Article  CAS  Google Scholar 

  17. Nguyen, T. T. & Shklovskii, B. I. Complexation of DNA with positive spheres: phase diagram of charge inversion and reentrant condensation. J. Chem. Phys. 115, 7298–7308 (2001).

    Article  CAS  Google Scholar 

  18. Zhang, F. et al. Reentrant condensation of proteins in solution induced by multivalent counterions. Phys. Rev. Lett. 101, 148101 (2008).

    Article  CAS  Google Scholar 

  19. Bibette, J., Mason, T. G., Gang, H., Weitz, D. A. & Poulin, P. Structure of adhesive emulsions. Langmuir 9, 3352–3356 (1993).

    Article  CAS  Google Scholar 

  20. Tang, Z., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowire. Science 297, 237–240 (2002).

    Article  CAS  Google Scholar 

  21. Chang, T. et al. Structural elucidation of dendritic host–guest complexes by X-ray crystallography and molecular dynamics simulations. Chem. Eur. J. 13, 7883–7889 (2007).

    Article  CAS  Google Scholar 

  22. Baars, M. W. P. L., Karlsson, A. J., Sorokin, V., de Waal, B. F. W. & Meijer, E. W. Supramolecular modification of the periphery of dendrimers resulting in rigidity and functionality. Angew Chem. Int. Ed. 39, 4262–4265 (2000).

    Article  CAS  Google Scholar 

  23. Broeren, M. A. C. et al. Multivalency in the gas phase: the study of dendritic aggregates by mass spectrometry. Angew Chem. Int. Ed. 43, 3557–3562 (2004).

    Article  CAS  Google Scholar 

  24. Broeren, M. A. C. et al. Multicomponent host–guest chemistry of carboxylic acid and phosphonic acid based guests with dendritic hosts: an NMR study. J. Am. Chem. Soc. 127, 10334–10343 (2005).

    Article  CAS  Google Scholar 

  25. Banerjee, D., Broeren, M. A. C., van Genderen, M. H. P., Meijer, E. W. & Rinaldi, P. L. An NMR study of the supramolecular chemistry of modified poly(propyleneimine) dendrimers. Macromolecules 37, 8313–8318 (2004).

    Article  CAS  Google Scholar 

  26. Broeren, M. A. C. et al. Noncovalent synthesis of supramolecular dendritic architectures in water. J. Polym. Sci. A 43, 6431–6437 (2005).

    Article  CAS  Google Scholar 

  27. Hermans, T. M. et al. Stepwise noncovalent synthesis leading to dendrimer-based assemblies in water. J. Am. Chem. Soc. 129, 15631–15638 (2007).

    Article  CAS  Google Scholar 

  28. Schenning, A. P. H. J. et al. Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am. Chem. Soc. 120, 8199–8208 (1998).

    Article  CAS  Google Scholar 

  29. Cui, S.-M. & Chen, Z. Y. Monte Carlo simulations of randomly branched polymers with annealed and quenched branching structures. Phys. Rev. E 53, 6238–6243 (1996).

    Article  CAS  Google Scholar 

  30. Gutin, A. M., Grosberg, A. Yu. & Shakhnovich, E. I. Polymers with annealed and quenched branchings belong to different universality classes. Macromolecules 26, 1293–1295 (1993).

    Article  CAS  Google Scholar 

  31. Witten, T. A. & Pincus, P. A. Structured Fluids (Oxford Univ. Press, 2004).

    Google Scholar 

  32. Babu, S., Rottereau, M., Nicolai, T., Gimel, J. C. & Durand, D. Flocculation and percolation in reversible cluster–cluster aggregation. Eur. Phys. J. E 19, 203–211 (2006).

    Article  CAS  Google Scholar 

  33. Wielgus-Kutrowska, B., Narczyk, M., Buszko, A., Bzowska, A. & Clark, P. L. Folding and unfolding of a non-fluorescent mutant of green fluorescent protein. J. Phys. Condens. Matter 19, 285223 (2007).

    Article  Google Scholar 

  34. Baskakov, I. V., Legname, G., Prusiner, S. B. & Cohen, F. E. Folding of prion protein to its native α-helical conformation is under kinetic control. J. Biol. Chem. 276, 19687–19690 (2001).

    Article  CAS  Google Scholar 

  35. Pelta, M. D., Morris, G. A., Stchedroff, M. J. & Hammond, S. J. A one-shot sequence for high-resolution diffusion-ordered spectroscopy. Magn. Reson. Chem. 40, S147–S152 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank BSIK project 03033 and the Netherlands Organization for Scientific Research for financial support.

Author information

Authors and Affiliations

Authors

Contributions

T.M.H. wrote the paper and performed NMR and viscosity measurements and performed the analysis of the fractal dimension of the WBP reconstruction from cryo-electron tomography. M.A.C.B. contributed materials. N.G. and G.F. performed and analysed light-scattering experiments. N.A.J.M.S. performed cryo-electron microscopy and tomography and analysis. P.V.D.S. helped with the theoretical understanding of the coupled equilibria. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to E. W. Meijer.

Supplementary information

Supplementary information

Supplementary information (PDF 1477 kb)

Supplementary movie

Supplementary movie (WMV 7576 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermans, T., Broeren, M., Gomopoulos, N. et al. Self-assembly of soft nanoparticles with tunable patchiness. Nature Nanotech 4, 721–726 (2009). https://doi.org/10.1038/nnano.2009.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing