Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy

Abstract

Highly selective and sensitive optical methods for the detection of metal ions have had a substantial impact on molecular biology1,2,3, environmental monitoring4,5,6,7,8,9,10 and other areas of research. Here we demonstrate a new method for detecting metal ions that is based on selective plasmonic resonance energy transfer (PRET) between conjugated metal–ligand complexes and a single gold nanoplasmonic probe. In addition to offering high spatial resolution due to the small size of the probe, our method is 100 to 1,000 times more sensitive than organic reporter-based methods3,4,5,6,7,8. Moreover, it can achieve high selectivity owing to the selective formation of Cu2+ complexes and selective resonant quenching of the gold nanoplasmonic probe by the conjugated complexes. We expect that PRET-based metal ion sensing could have applications in cellular imaging, systems biology and environmental monitoring.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmonic resonance energy transfer-based metal ion sensing (PRET-MIS).
Figure 2: Resonant quenching of a single gold nanoplasmonic probe by conjugated absorbing Cu2+ complexes.
Figure 3: Detection performance of the gold nanoplasmonic probe (GNP) system.
Figure 4: Highly selective detection owing to selective Cu2+ complex formation and selective PRET.

Similar content being viewed by others

References

  1. Lippard, S. J. & Berg, J. M. Principle of Bioinorganic Chemistry (University Science Books, 1994).

    Google Scholar 

  2. Tsien, R. W. & Tsien, R. Y. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715–760 (1990).

    Article  CAS  Google Scholar 

  3. Chang, C. J., Jaworski, J., Nolan, E. M., Sheng, M. & Lippard, S. J. A tautomeric zinc sensor for ratiometric fluorescence imaing: application to nitric oxide-induced release of intracellular zinc. Proc. Natl Acad. Soc. USA 101, 1129–1134 (2004).

    Article  CAS  Google Scholar 

  4. Coronado, E. et al. Reversible colourimetric probes for mercury sensing. J. Am. Chem. Soc. 127, 12351–12356 (2005).

    Article  CAS  Google Scholar 

  5. Ros-Lis, J. V., Marcos, M. D., Martinez-Manez, R., Rurack, K. & Soto, J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitivie optical determination of Hg2+ ions. Angew. Chem. Int. Ed. 44, 4405–4407 (2005).

    Article  CAS  Google Scholar 

  6. Zhu, X.-J., Fu, S.-T., Wong, W.-K., Guo, J.-P. & Wong, W.-Y. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin. Angew. Chem. Int. Ed. 45, 3150–3154 (2006).

    Article  CAS  Google Scholar 

  7. Mancin, F., Rampazzo, E., Tecilla, P. & Tonellato, U. Self-assembled fluorescent chemosensors. Chem. Eur. J. 12, 1844–1854 (2006).

    Article  CAS  Google Scholar 

  8. Krämer, R. Fluorescent chemosensors for Cu2+ ions: fast, selective, and highly sensitive. Angew. Chem. Int. Ed. 37, 772–773 (1998).

    Article  Google Scholar 

  9. Kim, Y., Johnson, R. C. & Hupp, J. T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 1, 165–167 (2001).

    Article  Google Scholar 

  10. Lee, J.-S., Han, M. S. & Mirkin, C. A. Colourimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 46, 4093–4096 (2007).

    Article  CAS  Google Scholar 

  11. Liu, G. L., Long, Y., Choi, Y., Kang, T. & Lee, L. P. Nanoscopic biomolecular absorption spectroscopy enabled by single nanoparticle plasmon resonance energy transfer. Nature Methods 4, 1015–1017 (2007).

    Article  CAS  Google Scholar 

  12. Gaggelli, E., Kozlowski, H., Valensin, D. & Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, Prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 106, 1995–2004 (2006).

    Article  CAS  Google Scholar 

  13. Jun, S. & Saxena, S. The aggregated state of amyloid-β peptide in vitro depends on Cu2+ ion concentration. Angew. Chem. Int. Ed. 47, 3959–3961 (2007).

    Article  Google Scholar 

  14. Huang, X. et al. Cu(ii) potentiation of Alzheimer A β neurotoxicity. J. Biol. Chem. 274, 37111–37116 (1999).

    Article  CAS  Google Scholar 

  15. Brown, D. R. et al. The cellular prion protein binds copper in vivo. Nature 390, 684–687 (1997).

    Article  CAS  Google Scholar 

  16. Que, E. L. & Chang, C. J. A smart magnetic resonance contrast agent for selective copper sensing. J. Am. Chem. Soc. 128, 15942–15943 (2006).

    Article  CAS  Google Scholar 

  17. Zheng, Y. et al. Development of fluorescent film sensors for the detection of divalent copper. J. Am. Chem. Soc. 125, 2680–2686 (2003).

    Article  CAS  Google Scholar 

  18. Klein, G., Kaufmann, D., Schürch, S. & Reymond, J.-L. A fluorescent metal sensor based on macrocyclic chelation. Chem. Commun. 561–562 (2001).

  19. Smith, R. M. & Martell, A. E. Critical Stability Constants (Plenum, 1975).

    Book  Google Scholar 

  20. Childs, W. R. & Nuzzo, R. G. Large-area patterning of coinage-metal thin films using decal transfer lithography. Langmuir 21, 195–202 (2005).

    Article  CAS  Google Scholar 

  21. Liu, G. L. et al. Molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006)

    Article  CAS  Google Scholar 

  22. Rascheke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).

    Article  Google Scholar 

  23. Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

    Article  CAS  Google Scholar 

  24. Van Duyne, R. P. Molecular plasmonics. Science 306, 985–986 (2004).

    Article  CAS  Google Scholar 

  25. Zhao, J. et al. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 128, 11004–11005 (2006).

    Article  CAS  Google Scholar 

  26. Romero, M. J., Lagemaat, J. v. d., Mora-Sero, I., Rumbles, G. & Al-Jassim, M. M. Imaging of resonant quenching of surface plasmons by quantum dots. Nano Lett. 6, 2833–2837 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Center for Nanostructured Materials and Technology under the 21st Century Frontier R&D Programs of the Korea Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

L.P.L. designed the nanospectroscopy research; Y.C. and T.K. conceived, designed and performed the experiments on selective ion detection; Y.P. fabricated functionalized gold nanoparticles for internalization into HeLa cells; Y.C., T.K. and L.P.L. wrote the paper.

Corresponding authors

Correspondence to Taewook Kang or Luke P. Lee.

Supplementary information

Supplementary information

Supplementary information (PDF 2369 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Park, Y., Kang, T. et al. Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nature Nanotech 4, 742–746 (2009). https://doi.org/10.1038/nnano.2009.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing