Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-electric quantum point contact spin-polarizer

Abstract

The controlled creation, manipulation and detection of spin-polarized currents by purely electrical means remains a central challenge of spintronics. Efforts to meet this challenge by exploiting the coupling of the electron orbital motion to its spin, in particular Rashba spin–orbit coupling, have so far been unsuccessful. Recently, it has been shown theoretically that the confining potential of a small current-carrying wire with high intrinsic spin–orbit coupling leads to the accumulation of opposite spins at opposite edges of the wire, though not to a spin-polarized current. Here, we present experimental evidence that a quantum point contact—a short wire—made from a semiconductor with high intrinsic spin–orbit coupling can generate a completely spin-polarized current when its lateral confinement is made highly asymmetric. By avoiding the use of ferromagnetic contacts or external magnetic fields, such quantum point contacts may make feasible the development of a variety of semiconductor spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance G of quantum point contact (QPC) devices.
Figure 2: Effect of temperature and drain–source bias voltage on the 0.5 plateau.
Figure 3: Effect of applied magnetic field on the 0.5 plateau.
Figure 4: NEGF computation of spontaneous spin polarization in model QPC.
Figure 5: NEGF computation of conductance G of model QPC.

Similar content being viewed by others

References

  1. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  2. Bychkov, Yu. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  Google Scholar 

  3. Winkler, R. Spin–orbit coupling effects in two-dimensional electron and hole systems. In Springer Tracts in Modern Physics 191 (Springer, 2003).

    Google Scholar 

  4. Debald, S. & Emary, C. Spin–orbit driven coherent oscillations in a few-electron quantum dot. Phys. Rev. Lett. 94, 226803 (2005).

    Article  Google Scholar 

  5. Flindt, C., Sorensen, A. S. & Flensberg, K. Spin–orbit mediated control of spin qubits. Phys. Rev. Lett. 97, 240501 (2006).

    Article  Google Scholar 

  6. Moroz, A. V. & Barnes, C. H. W. Effect of the spin–orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys. Rev. B 60, 14272–14285 (1999).

    Article  CAS  Google Scholar 

  7. Hattori, K. & Okamoto, H. Spin separation and spin Hall effect in quantum wires due to lateral-confinement-induced spin–orbit coupling. Phys. Rev. B 74, 155321 (2006).

    Article  Google Scholar 

  8. Xing, Y., Sun, Q.-f., Tang, L. & Hu, J. Accumulation of opposite spins on the transverse edges of a two-dimensional electron gas in a longitudinal electric field. Phys. Rev. B 74, 155313 (2006).

    Article  Google Scholar 

  9. Jiang, Y. & Hu, L. Kinetic magnetoelectric effect in a two-dimensional semiconductor strip due to boundary-confinement-induced spin–orbit coupling. Phys. Rev. B 74, 075302 (2006).

    Article  Google Scholar 

  10. Dyakonov, M. I. & Khaetskii, A. V. Spin physics in semiconductors. In Springer Series in Solid-State Sciences Ch. 8, Vol. 157 (Springer, 2008).

    Google Scholar 

  11. Engel, H.-A., Rashba, E. I. & Halperin, B. Theory of spin Hall effects in semiconductors. In Handbook of Magnetism and Advanced Magnetic Materials Vol. 5 (John Wiley & Sons, 2007).

    Google Scholar 

  12. Kato, Y. K., Myers, Y. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  CAS  Google Scholar 

  13. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  CAS  Google Scholar 

  14. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 2005).

    Google Scholar 

  15. Van Houten, H., Beenakker, C. W. J. & van Wees, B. J. Nanostructured systems. In Semiconductors and Semimetals Ch. 2, Vol. 35 (Academic Press, 1992).

    Google Scholar 

  16. Bird, P. J. & Ochiai, Y. Electron spin polarization in nanoscale constrictions. Science 303, 1621–1622 (2004).

    Article  CAS  Google Scholar 

  17. Büttiker, M. Nanostructured systems. In Semiconductors and Semimetals Ch. 4, Vol. 35 (Academic Press, 1992).

    Google Scholar 

  18. Beenakker, C. W. J. & van Houten, H. Solid State Physics: Advances in Research and Applications Ch. 1, Vol. 44 (Academic Press, 1991).

    Google Scholar 

  19. Lassl, A., Schlagheck, P. & Richter, K. Effects of short-range interactions on transport through quantum point contacts: a numerical approach. Phys. Rev. B 75, 045346 (2007).

    Article  Google Scholar 

  20. Matveev, K. A. Conductance of a quantum wire at low electron density. Phys. Rev. B 70, 245319 (2004).

    Article  Google Scholar 

  21. Fiete, G. A. The spin-incoherent Luttinger liquid. Rev. Mod. Phys. 79, 801–820 (2007).

    Article  Google Scholar 

  22. Debray, P., Zverev, V. N., Gurevich, V., Klesse, R. & Newrock, R. S. Coulomb drag between ballistic one-dimensional electron systems. Semicond. Sci. Technol. 17, R21–R34 (2002).

    Article  CAS  Google Scholar 

  23. Lusakowski, A., Wrobel, J. & Dietl, T. Effect of bulk inversion asymmetry on the Datta-Das transistor. Phys. Rev. B 68, 081201 (2003).

    Article  Google Scholar 

  24. Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Article  Google Scholar 

  25. Wang, C.-K. & Berggren, K.-F. Local spin polarization in ballistic quantum point contacts. Phys. Rev. B 57, 4552–4556 (1997).

    Article  Google Scholar 

  26. Hew, W. K. et al. Spin-incoherent transport in quantum wires. Phys. Rev. Lett. 101, 036801 (2008).

    Article  CAS  Google Scholar 

  27. Crook, R. et al. Conductance quantization at a half-integer plateau in a symmetric GaAs quantum wire. Science 312, 1359–1362 (2006).

    Article  CAS  Google Scholar 

  28. Thomas, K. J. et al. Interaction effects in a one-dimensional constriction. Phys. Rev. B 58, 4846–4852 (1998).

    Article  CAS  Google Scholar 

  29. J. Phys.: Condens. Matter 20 (2008).

  30. Hammer, P. R. & Johnson, M. Detection of spin-polarized electrons into a two-dimensional electron gas. Phys. Rev. Lett. 88, 066806 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

P.D. would like to thank J.J. Krich for interesting and useful discussions. The authors are thankful to J. Marcus and R. Schrott for technical help. This work was supported by National Science Foundation (NSF) awards ECCS 0725404 and DMR 0710581.

Author information

Authors and Affiliations

Authors

Contributions

P.D. conceived and designed the experiments, participated in some measurements, analysed the data and wrote the manuscript. S.M.S.R. made the samples and performed most of the experiments. J.W. and M.C. carried out the NEGF numerical calculations. A.T.N. and S.E.U. conducted theoretical calculations based on free-electron Hamiltonian. S.T.H. and R.S.N. contributed materials, analysis and experimental tools. M. J. contributed materials. M.M. helped with the experiments. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to P. Debray.

Supplementary information

Supplementary information

Supplementary information (PDF 2200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debray, P., Rahman, S., Wan, J. et al. All-electric quantum point contact spin-polarizer. Nature Nanotech 4, 759–764 (2009). https://doi.org/10.1038/nnano.2009.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2009.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing