Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Processing and properties of highly enriched double-wall carbon nanotubes

Abstract

Carbon nanotubes consist of one or more concentric graphene cylinders and are under investigation for a variety of applications that make use of their excellent thermal, mechanical, electronic and optical properties. Double-wall nanotubes are ideal systems for studying the interwall interactions influencing the properties of nanotubes with two or more walls. However, current techniques to synthesize double-wall nanotubes produce unwanted single- and multiwall nanotubes. Here, we show how density gradient ultracentrifugation can be used to separate double-wall nanotubes from mixtures of single- and multiwall nanotubes through differences in their buoyant density. This technique results in samples that are highly enriched in either single- or double-wall nanotubes of similar outer wall diameter, with the double-wall nanotubes being, on average, 44% longer than the single-wall nanotubes. The longer average length of the double-wall nanotubes provides distinct advantages when they are used in transparent conductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Separation of carbon nanotubes by number of walls using density differentiation.
Figure 2: Raman spectra of single- and double-wall nanotubes at two excitation wavelengths.
Figure 3: Optical absorbance spectra of thin films of single- and double-wall nanotubes.
Figure 4: Photoluminescence from solutions of sorted single- and double-wall nanotubes.
Figure 5: Length analyses of sorted single- and double-wall nanotubes.
Figure 6: Sheet resistance versus optical transmittance graphs for transparent conductive films of sorted and unsorted nanotubes.

Similar content being viewed by others

References

  1. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).new

    Article  Google Scholar 

  2. Wu, Z. C. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  Google Scholar 

  3. Ajayan, P. M. & Tour, J. M. Materials science: Nanotube composites. Nature 447, 1066–1068 (2007).

    Article  Google Scholar 

  4. Flahaut, E., Bacsa, R., Peigney, A. & Laurent, C. Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 1442–1443 (2003).

  5. Sugai, T. et al. New synthesis of high-quality double-walled carbon nanotubes by high-temperature pulsed arc discharge. Nano Lett. 3, 769–773 (2003).

    Article  Google Scholar 

  6. Bandow, S. et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  Google Scholar 

  7. Shimada, T. et al. Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics. Appl. Phys. Lett. 84, 2412–2414 (2004).

    Article  Google Scholar 

  8. Li, Y. F. et al. Electronic transport properties of Cs-encapsulated double-walled carbon nanotubes. Appl. Phys. Lett. 89, 093110 (2006).

    Article  Google Scholar 

  9. Kuwahara, S. et al. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett. 429, 581–585 (2006).

    Article  Google Scholar 

  10. Ha, B., Shin, D. H., Park, J. & Lee, C. J. Electronic structure and field emission properties of double-walled carbon nanotubes synthesized by hydrogen arc discharge. J. Phys. Chem. C 112, 430–435 (2008).

    Article  Google Scholar 

  11. Lyu, S. C., Lee, T. J., Yang, C. W. & Lee, C. J. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chem. Commun. 1404–1405 (2003).

  12. Kishi, N. et al. Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite–CCVD method. J. Phys. Chem. B 110, 24816–24821 (2006).

    Article  Google Scholar 

  13. Yamada, T. et al. Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotech. 1, 131–136 (2006).

    Article  Google Scholar 

  14. Kim, Y. A. et al. Fabrication of high-purity, double-walled carbon nanotube buckypaper. Chem. Vapor Depos. 12, 327–330 (2006).

    Article  Google Scholar 

  15. Arnold, M. S., Stupp, S. I. & Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).

    Article  Google Scholar 

  16. Arnold, M. S. et al. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  Google Scholar 

  17. Green, A. A. & Hersam, M. C. Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59–60 (2007).

    Article  Google Scholar 

  18. Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 3, 387–394 (2008).

    Article  Google Scholar 

  19. Lu, Q. et al. Determination of carbon nanotube density by gradient sedimentation. J. Phys. Chem. B 110, 24371–24376 (2006).

    Article  Google Scholar 

  20. Green, A. A. & Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 8, 1417–1422 (2008).

    Article  Google Scholar 

  21. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 3, 1235–1238 (2003).

    Article  Google Scholar 

  22. Kim, Y. A. et al. The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chem. Phys. Lett. 420, 377–381 (2006).

    Article  Google Scholar 

  23. Barros, E. B. et al. Raman spectroscopy of double-walled carbon nanotubes treated with H2SO4 . Phys. Rev. B 76, 045425 (2007).

    Article  Google Scholar 

  24. Souza, A. G. et al. Resonance Raman scattering studies in Br2-adsorbed double-wall carbon nanotubes. Phys. Rev. B 73, 235413 (2006).

    Article  Google Scholar 

  25. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  Google Scholar 

  26. Dettlaff-Weglikowska, U. et al. Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks. J. Am. Chem. Soc. 127, 5125–5131 (2005).

    Article  Google Scholar 

  27. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003).

    Article  Google Scholar 

  28. Strano, M. S. et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  Google Scholar 

  29. Okazaki, T. et al. Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Phys. Rev. B 74, 153404 (2006).

    Article  Google Scholar 

  30. Tan, P. H. et al. Photoluminescence spectroscopy of carbon nanotube bundles: Evidence for exciton energy transfer. Phys. Rev. Lett. 99, 137402 (2007).

    Article  Google Scholar 

  31. Torrens, O. N., Milkie, D. E., Zheng, M. & Kikkawa, J. M. Photoluminescence from intertube carrier migration in single-walled carbon nanotube bundles. Nano Lett. 6, 2864–2867 (2006).

    Article  Google Scholar 

  32. Qian, H. et al. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008).

    Article  Google Scholar 

  33. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005).

    Article  Google Scholar 

  34. Iakoubovskii, K. et al. IR-extended photoluminescence mapping of single-wall and double-wall carbon nanotubes. J. Phys. Chem. B 110, 17420–17424 (2006).

    Article  Google Scholar 

  35. Iakoubovskii, K. et al. Optical characterization of double-wall carbon nanotubes: Evidence for inner tube shielding. J. Phys. Chem. C 112, 11194–11198 (2008).

    Article  Google Scholar 

  36. Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    Article  Google Scholar 

  37. Hecht, D., Hu, L. B. & Gruner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

    Article  Google Scholar 

  38. Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 16, 3533–3539 (2006).

    Article  Google Scholar 

  39. Hu, L., Hecht, D. S. & Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4, 2513–2517 (2004).

    Article  Google Scholar 

  40. Li, Z. R. et al. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings. Langmuir 24, 2655–2662 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge G. N. Ostojic for helpful discussions and S. Li for help with transmission electron microscopy. This work was supported by the US Army Telemedicine and Advanced Technology Research Center (DAMD17-05-1-0381) and the National Science Foundation (DMR-0520513, EEC-0647560 and DMR-0706067). A Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (A.A.G.) and an Alfred P. Sloan Research Fellowship (M.C.H.) are also acknowledged. We acknowledge the use of instruments in the Keck-II and EPIC facility of the NUANCE Center, and the Keck Biophysics Facility at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois and Northwestern University.

Author information

Authors and Affiliations

Authors

Contributions

A.A.G. and M.C.H. conceived the experiments, analysed the data and co-wrote the manuscript. A.A.G. performed the experiments.

Corresponding author

Correspondence to Mark C. Hersam.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4993 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, A., Hersam, M. Processing and properties of highly enriched double-wall carbon nanotubes. Nature Nanotech 4, 64–70 (2009). https://doi.org/10.1038/nnano.2008.364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing