Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular junctions based on aromatic coupling

Abstract

If individual molecules are to be used as building blocks for electronic devices, it will be essential to understand charge transport at the level of single molecules. Most existing experiments rely on the synthesis of functional rod-like molecules with chemical linker groups at both ends to provide strong, covalent anchoring to the source and drain contacts. This approach has proved very successful, providing quantitative measures of single-molecule conductance, and demonstrating rectification and switching at the single-molecule level. However, the influence of intermolecular interactions on the formation and operation of molecular junctions has been overlooked. Here we report the use of oligo-phenylene ethynylene molecules as a model system, and establish that molecular junctions can still form when one of the chemical linker groups is displaced or even fully removed. Our results demonstrate that aromatic ππ coupling between adjacent molecules is efficient enough to allow for the controlled formation of molecular bridges between nearby electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anchoring of a molecule in a metal junction.
Figure 2: Measurement apparatus and conductance curves.
Figure 3: Conductance histograms for the different molecules.
Figure 4: Illustration of possible stacking configurations.

Similar content being viewed by others

References

  1. Ratner, M. A. & Aviram, A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  Google Scholar 

  2. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  3. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  4. Joachim, C. & Ratner, M. A. Molecular electronics special feature: Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    Article  CAS  Google Scholar 

  5. Selzer, Y. & Allara, D. L. Single-molecule electrical junctions. Ann. Rev. Phys. Chem. 57, 593–623 (2006).

    Article  CAS  Google Scholar 

  6. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  7. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: Clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  CAS  Google Scholar 

  8. Weibel, N., Grunder, S. & Mayor, M. Functional molecules in electronic circuits. Org. Biomol. Chem. 5, 2343–2353 (2007).

    CAS  Google Scholar 

  9. Mantooth, B. & Weiss, P. Fabrication, assembly, and characterization of molecular electronic components. Proc. IEEE 91, 1785–1802 (2003).

    Article  CAS  Google Scholar 

  10. Reed, M. A., Zhou, C., Müller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 (1997).

    Article  CAS  Google Scholar 

  11. Kergueris, C. et al. Electron transport through a metal–molecule–metal junction. Phys. Rev. B 59, 12505–12513 (1999).

    Article  CAS  Google Scholar 

  12. Smit, R. H. M. et al. Measurement of the conductance of a hydrogen molecule. Nature 419, 906–909 (2002).

    Article  CAS  Google Scholar 

  13. Reichert, J. et al. Driving current through single organic molecules. Phys. Rev. Lett. 88, 176804 (2002).

    Article  CAS  Google Scholar 

  14. Csonka, S. et al. Fractional conductance in hydrogen-embedded gold nanowires. Phys. Rev. Lett. 90, 116803 (2003).

    Article  Google Scholar 

  15. Böhler, T., Grebing, J., Mayer-Gindner, A., von Löhneysen, H. & Scheer, E. Mechanically controllable break-junctions for use as electrodes for molecular electronics. Nanotechnology 15, S465–S471 (2004).

    Article  Google Scholar 

  16. Champagne, A., Pasupathy, A. & Ralph, D. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  CAS  Google Scholar 

  17. González, M. T. et al. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 6, 2238–2242 (2006).

    Article  Google Scholar 

  18. Lörtscher, E., Ciszek, J., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  Google Scholar 

  19. Agrait, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  CAS  Google Scholar 

  20. Xu, B., Xiao, X. & Tao, N. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  Google Scholar 

  21. Huang, Z., Chen, F., Bennett, P. & Tao, N. Single molecule junctions formed via Au-thiol contact: Stability and breakdown mechanism. J. Am. Chem. Soc. 129, 13225–13231 (2007).

    Article  CAS  Google Scholar 

  22. James, D. K. & Tour, J. M. Molecular wires. Top. Curr. Chem. 257, 33–62 (2005).

    Article  CAS  Google Scholar 

  23. Weiss, E. A., Wasielewski, M. R. & Ratner, M. A. Molecules as wires: Molecule-assisted movement of charge and energy. Top. Curr. Chem. 257, 103–133 (2005).

    Article  Google Scholar 

  24. Grüter, L., González, M. T., Huber, R., Calame, M. & Schönenberger, C. Electrical conductance of atomic contacts in a liquid environment. Small 1, 1067–1070 (2005).

    Article  Google Scholar 

  25. Grüter, L. et al. Resonant tunnelling through a C60 molecular junction in a liquid environment. Nanotechnology 16, 2143–2148 (2005).

    Article  Google Scholar 

  26. Huber, R. et al. Electrical conductance of conjugated oligomers at the single molecule level. J. Am. Chem. Soc. 130, 1080–1084 (2008).

    Article  CAS  Google Scholar 

  27. Venkataraman, L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  28. Li, X.-L. et al. Thermally activated electron transport in single redox molecules. J. Am. Chem. Soc. 129, 11535–11542 (2007).

    Article  CAS  Google Scholar 

  29. Kim, K., Tarakeshwar, P. & Lee, J. Molecular clusters of π-systems: Theoretical studies of structures, spectra, and origin of interaction energies. Chem. Rev. 100, 4145–4186 (2000).

    Article  CAS  Google Scholar 

  30. Watson, M., Fechtenkotter, A. & Müllen, K. Big is beautiful – “aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem. Rev. 101, 1267–1300 (2001).

    Article  CAS  Google Scholar 

  31. Hoeben, F., Jonkheijm, P., Meijer, E. & Schenning, A. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).

    Article  CAS  Google Scholar 

  32. Taylor, J., Brandbyge, M. & Stokbro, K. Conductance switching in a molecular device: The role of side groups and intermolecular interactions. Phys. Rev. B 68, 121101 (2003).

    Article  Google Scholar 

  33. Blum, A. et al. Charge transport and scaling in molecular wires. J. Phys. Chem. B 108, 18124–18128 (2004).

    Article  CAS  Google Scholar 

  34. Selzer, Y. et al. Effect of local environment on molecular conduction: Isolated molecule versus self-assembled monolayer. Nano Lett. 5, 61–65 (2005).

    Article  CAS  Google Scholar 

  35. Galperin, M., Ratner, M. A. & Nitzan, A. Molecular transport junctions: vibrational effects. J. Phys. Condens. Matter 19, 103201 (2007).

    Article  Google Scholar 

  36. Hunter, C. A. & Sanders, J. K. M. The nature of ππ interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Article  CAS  Google Scholar 

  37. Seminario, J., Zacarias, A. & Tour, J. Theoretical interpretation of conductivity measurements of a thiotolane sandwich. A molecular scale electronic controller. J. Am. Chem. Soc. 120, 3970–3974 (1998).

    Article  CAS  Google Scholar 

  38. Levitus, M. et al. Steps to demarcate the effects of chromophore aggregation and planarization in poly(phenyleneethynylene)s. 1. Rotationally interrupted conjugation in the excited states of 1,4-bis(phenylethynyl)benzene. J. Am. Chem. Soc. 123, 4259–4265 (2001).

    Article  CAS  Google Scholar 

  39. Okuyama, K., Hasegawa, T., Ito, M. & Mikami, N. Electronic-spectra of tolane in a supersonic free jet – large-amplitude torsional motion. J. Phys. Chem. 88, 1711–1716 (1984).

    Article  CAS  Google Scholar 

  40. Miteva, T., Palmer, L., Kloppenburg, L., Neher, D. & Bunz, U. Interplay of thermochromicity and liquid crystalline behavior in poly(p-phenyleneethynylene)s: ππ interactions or planarization of the conjugated backbone? Macromolecules 33, 652–654 (2000).

    Article  CAS  Google Scholar 

  41. Kim, J. & Swager, T. M. Control of conformational and interpolymer effects in conjugated polymers. Nature 411, 1030–1034 (2001).

    Article  CAS  Google Scholar 

  42. Li, H., Powell, D. R., Firman, T. K. & West, R. Structures and photophysical properties of model compounds for arylethynylene disilylene polymers. Macromolecules 31, 1093–1098 (1998).

    Article  CAS  Google Scholar 

  43. Wang, C., Batsanov, A., Bryce, M. & Sage, I. Nanoscale aryleneethynylene molecular wires with reversible fluorenone electrochemistry for self-assembly onto metal surfaces. Org. Lett. 6, 2181–2184 (2004).

    Article  CAS  Google Scholar 

  44. Seferos, D. S., Trammell, S. A., Bazan, G. C. & Kushmerick, J. G. Probing π-coupling in molecular junctions. Proc. Natl Acad. Sci. USA 102, 8821–8825 (2005).

    Article  CAS  Google Scholar 

  45. Creager, S. et al. Electron transfer at electrodes through conjugated “molecular wire” bridges. J. Am. Chem. Soc. 121, 1059–1064 (1999).

    Article  CAS  Google Scholar 

  46. Schlicke, B., Belser, P., De Cola, L., Sabbioni, E. & Balzani, V. Photonic wires of nanometric dimensions. Electronic energy transfer in rigid rodlike Ru(bpy)32+-(ph)n-os(bpy)32+ compounds (ph = 1,4-phenylene; n = 3, 5, 7). J. Am. Chem. Soc. 121, 4207–4214 (1999).

    Article  CAS  Google Scholar 

  47. Atienza, C. et al. Tuning electron transfer through p-phenyleneethynylene molecular wires. Chem. Commun. 30, 3202–3204 (2006).

    Article  Google Scholar 

  48. Magoga, M. & Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 56, 4722–4729 (1997).

    Article  CAS  Google Scholar 

  49. Tomfohr, J. K. & Sankey, O. F. Simple estimates of the electron transport properties of molecules. Phys. Status Solidi 233, 59–69 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Swiss National Science Foundation and the National Center of Competence in Research ‘Nanoscale Science’. We also acknowledge the GEBERT RU¨F STIFTUNG for financial support. M.T.G. acknowledges the ‘Ministerio de Educación y Ciencia’ and the Freiwillige Akademische Gesellschaft for financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.W., R.H. and M.T.G. carried out the experiments and conducted the analysis; S.G. synthesized the molecules; M.C., M.M. and C.S. designed the experiment, initiated the collaboration and supported the project in discussions; and S.W., C.S. and M.C. wrote the manuscript.

Corresponding authors

Correspondence to Marcel Mayor or Michel Calame.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., González, M., Huber, R. et al. Molecular junctions based on aromatic coupling. Nature Nanotech 3, 569–574 (2008). https://doi.org/10.1038/nnano.2008.237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.237

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing