Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of chiral branched nanowires by the Eshelby Twist

Abstract

Manipulating the morphology of inorganic nanostructures, such as their chirality and branching structure, has been actively pursued as a means of controlling their electrical, optical and mechanical properties. Notable examples of chiral inorganic nanostructures include carbon nanotubes1,2, gold multishell nanowires3, mesoporous nanowires4,5 and helical nanowires6,7,8. Branched nanostructures9,10,11,12,13,14,15,16 have also been studied and been shown to have interesting properties for energy harvesting17 and nanoelectronics18. Combining both chiral and branching motifs into nanostructures might provide new materials properties. Here we show a chiral branched PbSe nanowire structure, which is formed by a vapour–liquid–solid branching from a central nanowire with an axial screw dislocation. The chirality is caused by the elastic strain of the axial screw dislocation, which produces a corresponding Eshelby Twist19,20 in the nanowires. In addition to opening up new opportunities for tailoring the properties of nanomaterials, these chiral branched nanowires also provide a direct visualization of the Eshelby Twist.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the formation of chiral branched nanowires.
Figure 2: Characterization of regular and chiral branched nanowires.
Figure 3: TEM characterization of PbSe chiral branched NWs.
Figure 4: Dislocation force curve simulation.

Similar content being viewed by others

References

  1. Odom, T. W., Huang, J. L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  Google Scholar 

  2. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  3. Kondo, Y. & Takayanagi, K. Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606–608 (2000).

    Article  Google Scholar 

  4. Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    Article  Google Scholar 

  5. Wu, Y. Y. et al. Composite mesostructures by nano-confinement. Nature Mater. 3, 816–822 (2004).

    Article  Google Scholar 

  6. Gao, P. X. et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309, 1700–1704 (2005).

    Article  Google Scholar 

  7. Meister, S. et al. Synthesis and characterization of phase-change nanowires. Nano Lett. 6, 1514–1517 (2006).

    Article  Google Scholar 

  8. Zhang, H. F., Wang, C. M. & Wang, L. S. Helical crystalline SiC/SiO2 core–shell nanowires. Nano Lett. 2, 941–944 (2002).

    Article  Google Scholar 

  9. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  Google Scholar 

  10. Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    Article  Google Scholar 

  11. Wang, D., Qian, F., Yang, C., Zhong, Z. H. & Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871–874 (2004).

    Article  Google Scholar 

  12. May, S. J., Zheng, J. G., Wessels, B. W. & Lauhon, L. J. Dendritic nanowire growth mediated by a self-assembled catalyst. Adv. Mater. 17, 598–602 (2005).

    Article  Google Scholar 

  13. Zhu, J. et al. Hyperbranched lead selenide nanowire networks. Nano Lett. 7, 1095–1099 (2007).

    Article  Google Scholar 

  14. Fardy, M., Hochbaum, A. I., Goldberger, J., Zhang, M. M. & Yang, P. D. Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19, 3047–3051 (2007).

    Article  Google Scholar 

  15. Bierman, M. J., Lau, Y. K. A. & Jin, S. Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett. 7, 2907–2912 (2007).

    Article  Google Scholar 

  16. Ge, J. P. et al. Orthogonal PbS nanowire arrays and networks and their Raman scattering behaviour. Chem. Eur. J. 11, 1889–1894 (2005).

    Article  Google Scholar 

  17. Sun, B. Q., Marx, E. & Greenham, N. C. Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett. 3, 961–963 (2003).

    Article  Google Scholar 

  18. Cui, Y., Banin, U., Bjork, M. T. & Alivisatos, A. P. Electrical transport through a single nanoscale semiconductor branch point. Nano Lett. 5, 1519–1523 (2004).

    Article  Google Scholar 

  19. Eshelby, J. D. Screw dislocations in thin rods. J. Appl. Phys. 24, 176–179 (1953).

    Article  Google Scholar 

  20. Bierman, M. J., Lau, Y. H. A., Kvit, A. V., Schmitt, A. L. & Jin, S. Dislocation-driven nanowire growth and Eshelby Twist. Science 320, 1060–1063 (2008).

    Article  Google Scholar 

  21. Wagner, R. S. & Ellis, W. C. Vapour–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  Google Scholar 

  22. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull. 28, 486–491 (2003).

    Article  Google Scholar 

  23. Yang, P. The chemistry and physics of semiconductor nanowires. MRS Bull. 30, 85–91 (2005).

    Article  Google Scholar 

  24. Sears, G. W. Twist in lithium fluoride whiskers. J. Chem. Phys. 31, 53–54 (1959).

    Article  Google Scholar 

  25. Sears, G. W., DeVries, R. C. & Huffine, C. Twist in alumina whiskers. J. Chem. Phys. 34, 2142–2143 (1961).

    Article  Google Scholar 

  26. Veblen, D. R. & Post, J. E. A TEM study of fibrous cuprite (chalcotrichite): microstructures and growth mechanisms. Am. Mineral. 68, 790–803 (1983).

    Google Scholar 

  27. Drum, C. M. Twist and axial imperfections in filamentary crystals of aluminum nitride. II. J. Appl. Phy. 36, 824–829 (1965).

    Article  Google Scholar 

  28. Gerber, C., Anselmetti, D., Bednorz, J. G., Mannhart, J. & Schlom, D. G. Screw dislocations in high-Tc films. Nature 350, 279–280 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges support from the Stanford Global Energy and Climate Project and the Center for Probing the Nanoscale (CPN) with National Science Foundation (NSF) grant PHY-0425897. J.Z. is a CPN Fellow. W.D.N. acknowledges support by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under grant DE-FG02-04ER46163.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and Y.C. conceived and designed the experiments. J.Z., A.F.M. and HP. performed the experiments. D.M.B. and W.D.N. performed simulation. J.Z., A.F.M., W.D.N. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Peng, H., Marshall, A. et al. Formation of chiral branched nanowires by the Eshelby Twist. Nature Nanotech 3, 477–481 (2008). https://doi.org/10.1038/nnano.2008.179

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.179

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing