Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trophic transfer of nanoparticles in a simplified invertebrate food web

Abstract

The unique chemical and physical properties of engineered nanomaterials1 that make them attractive for numerous applications also contribute to their unexpected behaviour in the environment and biological systems2. The potential environmental risks, including their impact on aquatic organisms, have been a central argument for regulating the growth of the nanotechnology sector3. Here we show in a simplified food web that carboxylated and biotinylated quantum dots can be transferred to higher trophic organisms (rotifers) through dietary uptake of ciliated protozoans. Quantum dot accumulation from the surrounding environment (bioconcentration) was limited in the ciliates and no quantum dot enrichment (biomagnification) was observed in the rotifers. Our findings indicate that dietary uptake of nanomaterials should be considered for higher trophic aquatic organisms. However, limited bioconcentration and lack of biomagnification may impede the detection of nanomaterials in invertebrate species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake and depuration of QDs by the ciliate T. pyriformis.
Figure 2: Trophic transfer of QDs by means of the ingestion of ciliate T. pyriformis by rotifer B. calyciflorus.

Similar content being viewed by others

References

  1. Rao, C. N. R. & Cheetham, A. K. Science and technology of nanomaterials: current status and future prospects. J. Mater. Chem. 11, 2887–2894 (2001).

    Article  CAS  Google Scholar 

  2. Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D. & Biswas, P. Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4336–4345 (2006).

    Article  CAS  Google Scholar 

  3. Colvin, V. L. The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21, 1166–1170 (2003).

    Article  CAS  Google Scholar 

  4. Thomann, R. V. Bioaccumulation model of organic-chemical distribution in aquatic food chains. Environ. Sci. Technol. 23, 699–707 (1989).

    Article  CAS  Google Scholar 

  5. Schecter, A. et al. Polybrominated diphenyl ethers (PBDEs) in US mothers' milk. Environ. Health Perspectives 111, 1723–1729 (2003).

    Article  CAS  Google Scholar 

  6. Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M. Sorption II: partitioning to living media—bioaccumulation and baseline toxicity, in Environmental Organic Chemistry, 2nd edn (eds Schwarzenbach, R. P., Gschwend, P. M. & Imboden, D. M.) (Wiley-Interscience, New York, 2002).

    Chapter  Google Scholar 

  7. Murk, A. J. et al. Effects of polyhalogenated aromatic hydrocarbons and related contaminants on common tern reproduction: integration of biological, biochemical, and chemical data. Arch. Environ. Contamin. Toxicol. 31, 128–140 (1996).

    Article  CAS  Google Scholar 

  8. Sanders, R. W., Caron, D. A. & Berninger, U. G. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters—an inter-ecosystem comparison. Marine Ecology–Progress Series 86, 1–14 (1992).

    Article  Google Scholar 

  9. Suedel, B. C., Boraczek, J. A., Peddicord, R. K., Clifford, P. A. & Dillon, T. M. Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems. Rev. Environ. Contamin. Toxicol. 136, 21–89 (1994).

    Article  CAS  Google Scholar 

  10. Reinfelder, J. R., Fisher, N. S., Luoma, S. N., Nichols, J. W. & Wang, W. X. Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci. Total Environ. 219, 117–135 (1998).

    Article  CAS  Google Scholar 

  11. Kloepfer, J. A., Mielke, R. E. & Nadeau, J. L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol. 71, 2548–2557 (2005).

    Article  CAS  Google Scholar 

  12. Christaki, U., Dolan, J. R., Pelegri, S. & Rassoulzadegan, F. Consumption of picoplankton-size particles by marine ciliates: effects of physiological state of the ciliate and particle quality. Limnol. Oceanogr. 43, 458–464 (1998).

    Article  Google Scholar 

  13. Lerche, D., Van De Plassche, E., Schwegler, A. & Balk, F. Selecting chemical substances for the UN-ECE POP Protocol. Chemosphere 47, 617–630 (2002).

    Article  CAS  Google Scholar 

  14. Nilsson, J. R. Food vacuoles in Tetrahymena pyriformis-Gl. J. Protozool. 24, 502–507 (1977).

    Article  Google Scholar 

  15. Sun, Y. H. et al. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells. Nanotechnology 17, 4469–4476 (2006).

    Article  Google Scholar 

  16. Straile, D. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator–prey weight ratio, and taxonomic group. Limnol. Oceanogr. 42, 1375–1385 (1997).

    Article  Google Scholar 

  17. Lampert, W. Release of dissolved organic-carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978).

    Article  CAS  Google Scholar 

  18. Fisk, A. T., Norstrom, R. J., Cymbalisty, C. D. & Muir, D. C. G. Dietary accumulation and depuration of hydrophobic organochlorines: bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 17, 951–961 (1998).

    Article  CAS  Google Scholar 

  19. Twining, B. S. & Fisher, N. S. Trophic transfer of trace metals from protozoa to mesozooplankton. Limnol. Oceanogr. 49, 28–39 (2004).

    Article  CAS  Google Scholar 

  20. Joaquim-Justo, C., Detry, C., Caufman, F. & Thome, J. P. Feeding of planktonic rotifers on ciliates: a method using natural ciliate assemblages labeled with fluorescent microparticles. J. Plankton Res. 26, 1289–1299 (2004).

    Article  Google Scholar 

  21. Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. DOI: 10.1021/es7029637.

  22. Hyung, H., Fortner, J. D., Hughes, J. B. & Kim, J. H. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ. Sci. Technol. 41, 179–184 (2007).

    Article  CAS  Google Scholar 

  23. Chen, C. Y. et al. Accumulation of heavy metals in food web components across a gradient of lakes. Limnol. Oceanogr. 45, 1525–1536 (2000).

    Article  CAS  Google Scholar 

  24. Patton, L. E., Shuler, M. L. & Lion, L. W. Development of a model microbial predator–prey system suitable for studies of the behavior of toxic trace metals. Environ. Toxicol. Chem. 23, 292–297 (2004).

    Article  CAS  Google Scholar 

  25. Ryman-Rasmussen, J. P., Riviere, J. E. & Monteiro-Riviere, N. A. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 91, 159–165 (2006).

    Article  CAS  Google Scholar 

  26. Mohr, S. & Adrian, R. Functional responses of the rotifers Brachionus calyciflorus and Brachionus rubens feeding on armored and unarmored ciliates. Limnol. Oceanogr. 45, 1175–1180 (2000).

    Article  Google Scholar 

  27. Gilbert, J. J. & Jack, J. D. Rotifers as predators on small ciliates. Hydrobiologia 255, 247–253 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Dunkers, M. Holden, S. Leigh, M. Salit, K. Scott, C. Zeissler (NIST) and T. Maugel (University of Maryland) for their assistance and H. Stapleton (Duke University) for crucial discussions regarding the biokinetic modelling. Disclaimer: Certain commercial equipment, instruments or materials are identified in this paper to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

R.D.H., J.B.M. and K.D.C. conceived and designed the experiment. R.D.H. performed the experiments and imaging and analysed the data. K.E.M. performed the ID-ICP-MS analysis. R.D.H. wrote the manuscript. All authors contributed to materials and analysis tools, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to R. David Holbrook.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holbrook, R., Murphy, K., Morrow, J. et al. Trophic transfer of nanoparticles in a simplified invertebrate food web. Nature Nanotech 3, 352–355 (2008). https://doi.org/10.1038/nnano.2008.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing