Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes

Abstract

The hollow core inside a carbon nanotube1 can be used to confine single molecules2,3 and it is now possible to image the movement of such molecules inside nanotubes4,5. To date, however, it has not been possible to control this motion, nor to detect the forces moving the molecules, despite experimental and theoretical evidence suggesting that almost friction-free motion might be possible inside the nanotubes6,7,8,9,10,11,12,13. Here, we report on precise measurements of the mechanical responses of individual metallofullerene molecules (Dy@C82) confined inside single-walled carbon nanotubes to the atom at the tip of an atomic force microscope operated in dynamic mode14,15. Using three-dimensional force mapping with atomic resolution16, we addressed the molecules from the exterior of the nanotube and measured their elastic and inelastic behaviour by simultaneously detecting the attractive forces and energy losses with three-dimensional, atomic-scale resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and microscopic features of a nanotube peapod.
Figure 2: Atomic-resolution AFM topography and energy-loss images.
Figure 3: Sectional force and energy-loss maps over a (Dy@C82)@SWNT peapod in the axial direction of the host nanotube.
Figure 4: Individual force and energy-loss spectra over typical atomic sites of an empty SWNT and a (Dy@C82)@SWNT peapod.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, Ph. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001).

    Book  Google Scholar 

  2. Smith, B. W., Monthioux, M. & Luzzi, D. E. Encapsulated C60 in carbon nanotubes. Nature 396, 323–324 (1998).

    Article  CAS  Google Scholar 

  3. Hummer, G., Resaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  4. Koshino, M. et al. Imaging of single organic molecules in motion. Science 316, 853 (2007).

    Article  CAS  Google Scholar 

  5. Liu, Z., Yanagi, K., Suenaga, K., Kataura, H. & Iijima, S. Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nature Nanotech. 2, 422–425 (2007).

    Article  CAS  Google Scholar 

  6. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  CAS  Google Scholar 

  7. Legoas, S. B. et al. Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators. Phys. Rev. Lett. 90, 055504 (2003).

    Article  CAS  Google Scholar 

  8. Miura, M., Kamiya, S. & Sasaki, N. C60 molecular bearings. Phys. Rev. Lett. 90, 055509 (2003).

    Article  CAS  Google Scholar 

  9. Tanney, P., Louie, S. G. & Cohen, M. L. Dynamic sliding friction between concentric carbon nanotubes. Phys. Rev. Lett. 93, 065503 (2004).

    Article  Google Scholar 

  10. Zhang, S., Liu, W. K. & Ruoff, R. S. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett. 4, 293–297 (2004).

    Article  CAS  Google Scholar 

  11. Kang, J. W. & Hwang, H. J. Fullerene nano ball bearings: an atomistic study. Nanotechnology 15, 614–621 (2004).

    Article  CAS  Google Scholar 

  12. Kis, A., Jensen, K., Aloni, S., Mickelson, W. & Zettl, A. Interlayer forces and ultralow sliding friction in multiwalled carbon nanotubes. Phys. Rev. Lett. 97, 025501 (2006).

    Article  CAS  Google Scholar 

  13. Su, H., Goddard, W. A. III & Zhao, Y. Dynamic friction force in a carbon peapod oscillator. Nanotechnology 17, 5691–5695 (2006).

    Article  Google Scholar 

  14. Morita, S., Wiesendanger, R. & Meyer, E. Noncontact Atomic Force Microscopy. NanoScience and Technology (Springer, Berlin, 2002).

    Book  Google Scholar 

  15. García, R. & Rubén, P. Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002).

    Article  Google Scholar 

  16. Ashino, M., Schwarz, A., Behnke, T. & Wiesendanger, R. Atomic-resolution dynamic force microscopy and spectroscopy of a single-walled carbon nanotube: Characterization of interatomic van der Waals forces. Phys. Rev. Lett. 93, 136101(2004).

    Article  Google Scholar 

  17. Hornbaker, D. J. et al. Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828–831 (2002).

    Article  CAS  Google Scholar 

  18. Lee, J. et al. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature 415, 1005–1008 (2002).

    Article  CAS  Google Scholar 

  19. Kantorovich, L. N. & Trevethan, T. General theory of microscopic dynamical response in surface probe microscopy: From imaging to dissipation. Phys. Rev. Lett. 93, 236102 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Fan for sample preparation. Financial support from the Deutsche Forschungsgemeinschaft and from the Interdisciplinary Nanoscience Center Hamburg (INCH) is gratefully acknowledged. D.O., S.Y. and A.N.K. are supported by the project CARDECOM, Research Grant Council of Hong Kong, and the European Science Foundation and Royal Society, respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.A., S.R. and R.W. conceived the experiments. M.A. designed and performed the experiments. M.A. and R.W. analysed the data. D.O., M.H., S.Y., A.N.K. and S.R. contributed materials. M.A. wrote the paper with the assistance of D.O. and A.N.K. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Makoto Ashino.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashino, M., Obergfell, D., Haluška, M. et al. Atomically resolved mechanical response of individual metallofullerene molecules confined inside carbon nanotubes. Nature Nanotech 3, 337–341 (2008). https://doi.org/10.1038/nnano.2008.126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing