Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mass production and dynamic imaging of fluorescent nanodiamonds

Abstract

Fluorescent nanodiamond is a new nanomaterial that possesses several useful properties, including good biocompatibility1, excellent photostability1,2 and facile surface functionalizability2,3. Moreover, when excited by a laser, defect centres within the nanodiamond emit photons that are capable of penetrating tissue, making them well suited for biological imaging applications1,2,4. Here, we show that bright fluorescent nanodiamonds can be produced in large quantities by irradiating synthetic diamond nanocrystallites with helium ions. The fluorescence is sufficiently bright and stable to allow three-dimensional tracking of a single particle within the cell by means of either one- or two-photon-excited fluorescence microscopy. The excellent photophysical characteristics are maintained for particles as small as 25 nm, suggesting that fluorescent nanodiamond is an ideal probe for long-term tracking and imaging in vivo, with good temporal and spatial resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of FNDs.
Figure 2: Two-photon excited fluorescence of FNDs.
Figure 3: One-photon and two-photon excited fluorescence images of 140-nm FNDs in a fixed HeLa cell.
Figure 4: Three-dimensional tracking of a single 35-nm FND in a live HeLa cell.

Similar content being viewed by others

References

  1. Yu, S.-J., Kang, M.-W., Chang, H.-C., Chen, K.-M. & Yu, Y.-C. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–17605 (2005).

    Article  CAS  Google Scholar 

  2. Fu, C.-C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    Article  CAS  Google Scholar 

  3. Huang, L.-C. L. & Chang, H.-C. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–5884 (2004).

    Article  CAS  Google Scholar 

  4. Neugart, F. et al. Dynamics of diamond nanoparticles in solution and cells. Nano Lett. 7, 3588–3591 (2007).

    Article  CAS  Google Scholar 

  5. Akin, D. et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotech. 2, 441–449 (2007).

    Article  CAS  Google Scholar 

  6. Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  7. Cui, B. et al. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl Acad. Sci. USA 104, 13666–13671 (2007).

    Article  CAS  Google Scholar 

  8. Gruber, A. et al. Scanning confocal optical microscopy and magnetic resonance on single defect centres. Science 276, 2012–2014 (1997).

    Article  CAS  Google Scholar 

  9. Treussart, F. et al. Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Physica B 376, 926–929 (2006).

    Article  Google Scholar 

  10. Schrand, A. M. et al. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B 111, 2–7 (2007).

    Article  CAS  Google Scholar 

  11. Liu, K,-K., Cheng, C.-L., Chang, C.-C. & Chao, J.-I. Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechology 18, 325102 (2007).

    Article  Google Scholar 

  12. Huang, H., Pierstorff, E., Osawa, E. & Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–3314 (2007).

    Article  CAS  Google Scholar 

  13. Schrand, A. M., Dai, L. M., Schlager, J. J., Hussain, S.M. & Osawa, E. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Relat. Mater. 16, 2118–2123 (2007).

    Article  CAS  Google Scholar 

  14. Davies, G. & Hamer, M. F. Optical studies of 1.945 eV vibronic band in diamond. Proc. R. Soc. Lond. A 348, 285–298 (1976).

    Article  CAS  Google Scholar 

  15. Lawson, S. C., Fisher, D., Hunt, D. C. & Newton, M. On the existence of positively charged single-substitutional nitrogen in diamond. J. Phys. Condens. Matter 10, 6171–6180 (1998).

    Article  CAS  Google Scholar 

  16. Ziegler, J. F., Biersack, J. P. & Littmark, U. The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  17. Wee, T.-L. et al. Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond. J. Phys. Chem. A 111, 9379–9386 (2007).

    Article  CAS  Google Scholar 

  18. Xu, C., Zipfel, W., Shear, J. B., Williams, R. M. & Webb, W. W. Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc. Natl Acad. Sci. USA 93, 10763–10768 (1996).

    Article  CAS  Google Scholar 

  19. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  20. Vlasov, I. I. et al. Relative abundance of single and vacancy-bonded substitutional nitrogen in CVD diamond. Phys. Stat. Sol. A 181, 83–90 (2000).

    Article  CAS  Google Scholar 

  21. Dumeige, Y. et al. Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. J. Luminesc. 109, 61–67 (2004).

    Article  CAS  Google Scholar 

  22. Gu, M. in Principle of Three-Dimensional Imaging in Confocal Microscopes Ch. 5 (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  23. Speidel, M., Jonas, A. & Florin, E.-L. Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28, 69–71 (2003).

    Article  CAS  Google Scholar 

  24. Holtzer, L., Meckel, T. & Schmidt, T. Nanometric three-dimensional tracking of individual quantum dots in cells. Appl. Phys. Lett. 90, 053902 (2007).

    Article  Google Scholar 

  25. Cang, H., Xu, C. S., Montiel, D. & Yang, H. Guiding a confocal microscope by single fluorescent nanoparticles. Opt. Lett. 32, 2729–2731 (2007).

    Article  Google Scholar 

  26. Greber, U. F. & Way, M. A superhighway to virus infection. Cell 124, 741–754 (2006).

    Article  CAS  Google Scholar 

  27. Hong, Q. A., Sheetz, M. P. & Elson, E. L. Single-particle tracking—analysis of diffusion and flow in 2-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  Google Scholar 

  28. Yu, J., Xiao, J., Ren, X., Lao, X. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  CAS  Google Scholar 

  29. Krüger, A., Liang, Y. J., Jarre, G. & Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006).

    Article  Google Scholar 

  30. Smith, B. R., Niebert, M., Plakhotnik, T. & Zvyagin, A. V. Transfection and imaging of diamond nanocrystals as scattering optical labels. J. Luminesc. 127, 260–263 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Academia Sinica and the National Science Council (grant no. NSC 96-2120-M-001-008 and NSC-95-2120-M-002-003) of Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Contributions

H.-C.C. and W.F. conceived and designed the experiments. Y.-R.C., H.-Y.L., K.C., C.-C.C., D.-S.T., C.-C.F., T.-S.L., Y.-K.T. and C.-Y.F. performed the experiments. Y.-R.C., H.-Y.L., C.-Y.F., H.-C.C. and W.F. analysed the data. C.-C.H. contributed materials and analysis tools. Y.-R.C., H.-C.C. and W.F. co-wrote the paper. Y.-K.T. and C.-Y.F. are responsible for mass production, H.-Y.L. and C.-C.C. are responsible for two-photon imaging, Y.-R.C., C.-C.F., D.-S.T. and K.C. are responsible for three-dimensional tracking of FNDs.

Corresponding authors

Correspondence to Huan-Cheng Chang or Wunshain Fann.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YR., Lee, HY., Chen, K. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech 3, 284–288 (2008). https://doi.org/10.1038/nnano.2008.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.99

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing