Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates

Abstract

The use of dendrimer templates to make metal-based nanoparticles of controlled size has attracted much interest. These highly branched macromolecules have well-defined structures that enable them to bind metal ions to generate precursors that can be converted into nanoparticles. We describe the sub-nanometre size control of both anatase and rutile forms of TiO2 particles with phenylazomethine dendrimers, leading to samples with very narrow size distributions. Such fine tuning is possible because both the number and location of metal ions can be precisely controlled in these templates. Quantum size effects are observed in the particles, and the energy gap between the conduction and valence bands exhibits a blueshift with decreasing particle size and is dependent on the crystal form of the material. The dependency of the bandgap energy on these factors is explained using a semi-empirical effective mass approximation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sub-nanometre size control and synthetic strategy for Q-size TiO2 using the DPA G4 template.
Figure 2: Changes in UV-vis spectra of DPA G4 during the addition of Ti(acac)Cl3.
Figure 3: Stepwise radial complexation of Ti(acac)Cl3 into DPA G4.
Figure 4: Size measurements for TiO2 obtained using the DPA G4 template.
Figure 5: Bandgap measurements for 6TiO2 (green), 14TiO2 (red) and 30TiO2 (blue).

Similar content being viewed by others

References

  1. Varnavski, O., Ispasoiu, R. G., Balogh, L., Tomalia, D. & Goodson III, T. Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites. J. Chem. Phys. 114, 1962–1695 (2001).

    Article  CAS  Google Scholar 

  2. Scott, R. W. J., Wilson, O. M., & Crooks, R. M. Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B 109, 692–704 (2005).

    Article  CAS  Google Scholar 

  3. Scott, R. W. J., Ye, H., Henriquez, R. R. & Crooks, R. M. Synthesis, characterization, and stability of dendrimer-encapsulated palladium nanoparticles. Chem. Mater. 15, 3873–3878 (2003).

    Article  CAS  Google Scholar 

  4. Lang, H., May, R. A., Iversen, B. L. & Chandler, B. D. Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J. Am. Chem. Soc. 125, 14832–14836 (2003).

    Article  CAS  Google Scholar 

  5. Tomalia, D. A., Naylor, A. M. & Goddard III, W. A. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Edn Engl. 29, 138–175 (1990).

    Article  Google Scholar 

  6. Tomalia, D. A. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 30, 294–324 (2005).

    Article  CAS  Google Scholar 

  7. Zhao, M., Sun, L. & Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877–4878 (1998).

    Article  CAS  Google Scholar 

  8. Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998).

    Article  CAS  Google Scholar 

  9. Yamamoto, K., Higuchi, M., Shiki, S., Tsuruta, M. & Chiba, H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 415, 509–511 (2002).

    Article  CAS  Google Scholar 

  10. Yamamoto, K. Dendrimer complexes: Fine control of metal assembly in macromolecules. J. Polym. Sci. A, Polym. Chem. 43, 3719–3727 (2005).

    Article  CAS  Google Scholar 

  11. Yong-Gu Kim, Sang-Keun Oh & Crooks, R. M. Preparation and characterization of 1–2 nm dendrimer-encapsulated gold nanoparticles having very narrow size distributions. Chem. Mater. 16, 167–172 (2004).

    Article  Google Scholar 

  12. Whetten, R. L. et al. Nanocrystal gold molecules. Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  13. Tsunoyama, H., Negishi, Y. & Tsukuda T. Chromatographic isolation of ‘missing’ Au55 clusters protected by alkanethiolates. J. Am. Chem. Soc. 128, 6036–6037 (2006).

    Article  CAS  Google Scholar 

  14. Velarde-Ortiz, R. & Larsen, G. A poly(propylene imine) (DAB-Am-64) dendrimer as Cu2+ chelator for the synthesis of copper oxide clusters embedded in sol–gel derived matrixes. Chem. Mater. 14, 858–866 (2002).

    Article  CAS  Google Scholar 

  15. Choi, H. C., Kim, W., Wang, D. & Dai, H. Delivery of catalytic metal species onto surfaces with dendrimer carriers for the synthesis of carbon nanotubes with narrow diameter distribution. J. Phys. Chem. B 106, 12361–12365 (2002).

    Article  CAS  Google Scholar 

  16. Juttukonda, V. et al. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers. J. Am. Chem. Soc. 128, 420–421 (2006).

    Article  CAS  Google Scholar 

  17. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  18. Wang, R. et al. Reversible switching between superhydrophilicity and superhydrophobicity. Nature 388, 431–432 (1997).

    Article  CAS  Google Scholar 

  19. Oregan, B. & Grätzel, M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    Article  CAS  Google Scholar 

  20. Anpo, M., Shima, T., Kodama, S. & Kubokawa, Y. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. J. Phys. Chem. 91, 4305–4310 (1987).

    Article  CAS  Google Scholar 

  21. Kormann, C., Bahnemann, D. W. & Hoffmann, M. R. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196–5201 (1988).

    Article  CAS  Google Scholar 

  22. Monticone, S., Tufeu, R., Kanaev, A. V., Scolan, E. & Sanchez, C. Quantum size effect in TiO2 nanoparticles: does it exist? Appl. Surf. Sci., 162–163, 565–570 (2000).

    Article  Google Scholar 

  23. Serpone, N., Lawless, D. & Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor. J. Phys. Chem. 99, 16646–16654 (1995).

    Article  CAS  Google Scholar 

  24. Geobaldo, F. et al. DRS UV-vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite. Catal. Lett. 16, 109–115 (1992).

    Article  CAS  Google Scholar 

  25. Marchese, L. et al. Structure–functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies. Phys. Chem. Chem. Phys. 1, 585–592 (1999).

    Article  CAS  Google Scholar 

  26. Hu, Y. et al. Characterization of the local structures of Ti-MCM-41 and their photocatalytic reactivity for the decomposition of NO into N2 and O2 . J. Phys. Chem. B 110, 1680–1685 (2006).

    Article  CAS  Google Scholar 

  27. Rao, C. N. R., Müller, A. & Cheetham, A. K. The Chemistry of Nanomaterials: Synthesis, Properties and Applications Ch. 11 (Wiley-VCH Verlag GmbH, Weinheim, 2004).

    Book  Google Scholar 

  28. Nosaka, Y. Finite depth spherical well model for excited states of ultrasmall semiconductor particles. An application. J. Phys. Chem. 95, 5054–5058 (1991).

    Article  CAS  Google Scholar 

  29. Brus, L. E. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    Article  CAS  Google Scholar 

  30. Monticone, S., Tufeu, R. & Kanaev, A. V. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J. Phys. Chem. B 102, 2854–2862 (1998).

    Article  CAS  Google Scholar 

  31. Vossmeyer, T. et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 98, 7665–7673 (1994).

    Article  CAS  Google Scholar 

  32. Malik, M. A., O'Brien, P., Norager, S. & Smith, J. Gallium arsenide nanoparticles: synthesis and characterization. J. Mater. Chem. 13, 2591–2595 (2003).

    Article  CAS  Google Scholar 

  33. Zhu, K., Shi, J. & Zhang, L. Preparation and optical absorption of InSb microcrystallites embedded in SiO2 thin films. Solid State Commun. 107, 79–84 (1998).

    Article  CAS  Google Scholar 

  34. Shen, Q. et al. Photoexcited hole dynamics in TiO2 nanocrystalline films characterized using a lens-free heterodyne detection transient grating technique. Chem. Phys. Lett. 419, 464–468 (2006).

    Article  CAS  Google Scholar 

  35. Kavan, L., Grätzel, M., Gilbert, S. E., Klemenz, C. & Scheel, H. J. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716–6723 (1996).

    Article  CAS  Google Scholar 

  36. Serpone, N., Bird, P. H., Somogyvari, A. & Bickley, D. G. Five-coordinate titanium(IV) complexes. Infrared spectral studies on X3Ti(diketonato) and XY2Ti(diketonato) complexes and the crystal and molecular structure of di-μ-chloro-tetrachloro-bis(2,4-pentanedionato)dititanium(IV). Inorg. Chem. 16, 2381–2386 (1977).

    Article  CAS  Google Scholar 

  37. Satoh, N., Nakashima, T. & Yamamoto, K. Metal-assembling dendrimers with a triarylamine core and their application to a dye-sensitized solar cell. J. Am. Chem. Soc. 127, 13030–13038 (2005).

    Article  CAS  Google Scholar 

  38. Nakajima, R., Tsuruta, M., Higuchi, M. & Yamamoto, K. Fine control of the release and encapsulation of Fe ions in dendrimers through ferritin-like redox switching. J. Am. Chem. Soc. 126, 1630–1631 (2004).

    Article  CAS  Google Scholar 

  39. Satoh, N. et al. Formation of nano-dots of phenylazomethine dendrimers with Rhodamine 6G on mica. Polym. Adv. Technol. 15, 159–163 (2004).

    Article  CAS  Google Scholar 

  40. Yamamoto, K. et al. Novel functional groups with fine-controlled metal assembling function. Bull. Chem. Soc. Jpn 78, 349–355 (2005).

    Article  CAS  Google Scholar 

  41. Yan, M., Chen, F., Zhang, J. & Anpo, M. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B 109, 8673–8678 (2005).

    Article  CAS  Google Scholar 

  42. Kanazawa, H., Higuchi, M. & Yamamoto, K. Synthesis and chemical degradation of thermostable polyamide with imine bond for chemical recycling. Macromolecules 39, 138–144 (2006).

    Article  CAS  Google Scholar 

  43. Tang, J. et al. An organometallic synthesis of TiO2 nanoparticles. Nano Lett. 5, 543–548 (2005).

    Article  CAS  Google Scholar 

  44. Takahashi, H., Fujita, K. & Ohno, H. Direct visible spectral analysis of solid samples by optical waveguide spectroscopy due to adsorbed sample molecules after sublimation. Chem. Lett. 36, 116–117 (2007).

    Article  CAS  Google Scholar 

  45. Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 5, 721–729 (1970).

    Article  CAS  Google Scholar 

  46. Tauc, J., Grigorovici, R. & Vancu. A. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966).

    Article  CAS  Google Scholar 

  47. Anpo, M. et al. Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium–silicon oxides. J. Phys. Chem. 90, 1633–1636 (1986).

    Article  CAS  Google Scholar 

  48. Slinkard, W. E. & DeGroot, P. B. Vanadium–titanium oxide catalysts for oxidation of butene to acetic acid. J. Catal. 68, 423–432 (1981).

    Article  CAS  Google Scholar 

  49. Scolan, E. & Sanchez, C. Synthesis and characterization of surface-protected nanocrystalline titania particles. Chem. Mater. 10, 3217–3223 (1998).

    Article  CAS  Google Scholar 

  50. Zimmerman, A. M., Doren, D. J. & Lobo, R. F. Electronic and geometric properties of ETS-10: QM/MM studies of cluster models. J. Phys. Chem. B 110, 8959–8964 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Einaga, N. Yoshioka and H. Imai for useful discussions. This work was partially supported by CREST from the Japan Science and Technology Agency, Grants-in-Aid for Scientific Research (No. 19205020) and the 21st Center of Excellence (COE) Program (Keio-LCC) from Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments. N.S. and K.Y. co-wrote the paper.

Corresponding author

Correspondence to Kimihisa Yamamoto.

Supplementary information

Supplementary Information

Supplementary information, supplementary figures and supplementary tables (PDF 2969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, N., Nakashima, T., Kamikura, K. et al. Quantum size effect in TiO2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates. Nature Nanotech 3, 106–111 (2008). https://doi.org/10.1038/nnano.2008.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing