Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles

Abstract

Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleosides are the building blocks of nucleic acids.
Figure 2: Each chemical moiety of a nucleotide plays a specific role in directing the templated synthesis of inorganic NPs.
Figure 4: The use of nucleic acids as templates for the growth of inorganic NPs has proven successful for the synthesis of several nanomaterials.
Figure 3: Nucleic acid sequences are able to recognize or catalyse the formation of NPs with specific morphologies.

Similar content being viewed by others

References

  1. Burda, C., Chen, X. B., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    Article  CAS  Google Scholar 

  2. Cushing, B. L., Kolesnichenko, V. L. & O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004).

    Article  CAS  Google Scholar 

  3. Murray, C. B., Kagan, C. R., Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  4. Lowenstam, H. A., Weiner, S. On Biomineralization (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  5. Mann, S., Webb, J., Williams, R. J. P. Biomineralization. Chemical and Biochemical Perspectives (Wiley-VCH, Weinheim, 1989).

    Google Scholar 

  6. Bauerlein, E. Biomineralization (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  7. Mann, S. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365, 499–505 (1993).

    Article  CAS  Google Scholar 

  8. Mann, S. et al. Crystallization at inorganic-organic interfaces—biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).

    Article  CAS  Google Scholar 

  9. Heuer, A. H. et al. Innovative materials processing strategies—a biomimetic approach. Science 255, 1098–1105 (1992).

    Article  CAS  Google Scholar 

  10. Sakaguchi, T., Burgess, J. G. & Matsunaga, T. Magnetite formation by a sulphate-reducing bacterium. Nature 365, 47–49 (1993).

    Article  CAS  Google Scholar 

  11. Dameron, C. T. et al. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338, 596–598 (1989).

    Article  CAS  Google Scholar 

  12. Mann, S. Molecular recognition in biomineralization. Nature 332, 119–124 (1988).

    Article  CAS  Google Scholar 

  13. Barbas, J., Santhanagopalan, V., Blaszczynski, M., Ellis, W. R. & Winge, D. R. Conversion in the peptides coating CdS crystallites in C. Glabrata. J. Inorg. Biochem. 48, 95–105 (1992).

    Article  CAS  Google Scholar 

  14. Bae, W. & Mehra, R. K. Metal-binding characteristics of a phytochelatin analog (Glu-Cys)2Gly. J. Inorg. Biochem. 68, 201–210 (1997).

    Article  CAS  Google Scholar 

  15. Hoess, R. H. Protein design and phage display. Chem. Rev. 101, 3205–3218 (2001).

    Article  CAS  Google Scholar 

  16. Whaley, S. R., English, D. S., Hu, E. L. & Barbara, P. F., Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  17. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  18. Levy, R. et al. Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J. Am. Chem. Soc. 126, 10076–10084 (2004).

    Article  CAS  Google Scholar 

  19. Izatt, R. M., Christensen, J. J. & Rytting, J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides and nucleotides. Chem. Rev. 71, 440–481 (1971).

    Article  Google Scholar 

  20. Martin, R. B. Nucleoside sites for transition metal ion binding. Acc. Chem. Res. 18, 32–38 (1985).

    Article  CAS  Google Scholar 

  21. Sigel, H. Interaction of metal-ions with nucleotides and nucleic acids and their constituents. Chem. Soc. Rev. 22, 255–267 (1993).

    Article  CAS  Google Scholar 

  22. Klug, S. J. & Famulok, M. All you wanted to know about SELEX. Mol. Biol. Rep. 20, 97–107 (1994).

    Article  CAS  Google Scholar 

  23. Wilson, C. & Keefe, A. D. Building oligonucleotide therapeutics using non-natural chemistries. Curr. Opin. Chem. Biol. 10, 607–614 (2006).

    Article  CAS  Google Scholar 

  24. Sigel, R. K. O., Freisinger, E. & Lippert, B. Effects of N7-methylation, N7-platination, and C8-hydroxylation of guanine on H-bond formation with cytosine: platinum coordination strengthens the Watson-Crick pair. J. Biol. Inorg. Chem. 5, 287–299 (2000).

    Article  CAS  Google Scholar 

  25. Anastassopoulou, J. Metal-DNA interactions. J. Mol. Struct. 651, 19–26 (2003).

    Article  Google Scholar 

  26. Sigel, H. & Griesser, R. Nucleoside 5′-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem. Soc. Rev. 34, 875–900 (2005).

    Article  CAS  Google Scholar 

  27. Sigel, H., Massoud, S. S. & Corfu, N. A. Comparison of the extent of macrochelate formation in complexes of divalent metal-ions with guanosine (GMP2−), inosine (IMP2−), and adenosine 5′-monophosphate (AMP2−) - the crucial role of N-7 basicity in metal-ion nucleic base recognition. J. Am. Chem. Soc. 116, 2958–2971 (1994).

    Article  CAS  Google Scholar 

  28. de la Fuente, M., Hernanz, A. & Navarro, R. IR and raman study on the interactions of the 5 '-GMP and 5 '-CMP phosphate groups with Mg(II), Ca(II), Sr(II), Ba(II), Cr(III), Co(II), Cu(II), Zn(II), Cd(II), Al(III) and Ga(III). J. Biol. Inorg. Chem. 9, 973–986 (2004).

    Article  CAS  Google Scholar 

  29. Burda, J. V., Sponer, J., Leszczynski, J. & Hobza, P. Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): Nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. J. Phys. Chem. B 101, 9670–9677 (1997).

    Article  CAS  Google Scholar 

  30. Hinds, S. et al. Nucleotide-directed growth of semiconductor nanocrystals. J. Am. Chem. Soc. 128, 64–65 (2006).

    Article  CAS  Google Scholar 

  31. Feldheim, D. L. & Eaton, B. E. Selection of biomolecules capable of mediating the formation of nanocrystals. ACS Nano 1, 154–159 (2007).

    Article  CAS  Google Scholar 

  32. Kumar, A. & Mital, S. Electronic properties of Q-CdS clusters stabilized by adenine. J. Colloid Interface Sci. 240, 459–466 (2001).

    Article  CAS  Google Scholar 

  33. Kumar, A. & Mital, S. Synthesis and photophysics of purine-capped Q-CdS nanocrystallites. Photochem. Photobiol. Sci. 1, 737–741 (2002).

    Article  CAS  Google Scholar 

  34. Kumar, A. & Negi, D. P. S. Photophysics and photocatalytic properties of Cd(OH)2-coated Q-CdS clusters in the presence of guanine and related compounds. J. Colloid Interface Sci. 238, 310–317 (2001).

    Article  CAS  Google Scholar 

  35. Kumar, A. & Mital, S. Synthesis and photophysics of 6-dimethylaminopurine-capped Q-CdS nanoparticles—a study of its photocatalytic behavior. Int. J. Photoen. 6, 61–68 (2004).

    Article  CAS  Google Scholar 

  36. Green, M., Taylor, R. & Wakefield, G. The synthesis of luminescent adenosine triphosphate passivated cadmium sulfide nanoparticles. J. Mater. Chem. 13, 1859–1861 (2003).

    Article  CAS  Google Scholar 

  37. Green, M., Smith-Boyle, D., Harries, J. & Taylor, R. Nucleotide passivated cadmium sulfide quantum dots. Chem. Commun. 4830–4832 (2005).

  38. Dooley, C. J., Rouge, J., Ma, N., Invernale, M. & Kelley, S. O. Nucleotide-stabilized cadmium sulfide nanoparticles. J. Mater. Chem. 17, 1687–1691 (2007).

    Article  CAS  Google Scholar 

  39. Green, M., Smyth-Boyle, D. Directed growth of gold nanostructures using a nucleoside/nucleotide. J. Mater. Chem. 17, 3588–3590 (2007).

    Article  CAS  Google Scholar 

  40. Zhao, W., Gonzaga, F., Li, Y. & Brook, M. A. Highly stabilized nucleotide-capped small gold nanoparticles with tunable size. Adv. Mater. 19, 1766–1771 (2007).

    Article  CAS  Google Scholar 

  41. Coffer, J. L. & Chandler, R. Mater. Res. Soc. Symp. Proc. 206, 527 (1991).

    Article  CAS  Google Scholar 

  42. Bigham, S. R. & Coffer, J. L. Deactivation of Q-Cds photoluminescence through polynucleotide surface binding. J. Phys. Chem. 96, 10581–10584 (1992).

    Article  CAS  Google Scholar 

  43. Coffer, J. L., Bigham, S. R., Pinizzotto, R. F. & Yang, H. Characterization of quantum-confined CdS nanocrystallites stabilized by deoxyribonucleic acid (DNA). Nanotechnology 3, 69 (1992).

    Article  Google Scholar 

  44. Bigham, S. R. & Coffer, J. L. The influence of adenine content on the properties of Q-Cds clusters stabilized by polynucleotides. Colloids Surf. A 95, 211–219 (1995).

    Article  CAS  Google Scholar 

  45. Bigham, S. R. & Coffer, J. L. Thermochemical passivation of DNA-stabilized Q-cadmium sulfide nanoparticles. J. Cluster Sci. 11, 359–372 (2000).

    Article  CAS  Google Scholar 

  46. Li, X. & Coffer, J. L. Effect of pressure on the photoluminescence of polynucleotide-stabilized cadmium sulfide nanocrystals. Chem. Mater. 11, 2326–2330 (1999).

    Article  CAS  Google Scholar 

  47. Berti, L., Alessandrini, A., Bellesia, M. & Facci, P. Fine-tuning nanoparticle size by oligo(guanine)n templated synthesis of CdS: an AFM study. Langmuir 23, 10891–10892 (2007).

    Article  CAS  Google Scholar 

  48. Ma, N., Yang, J., Stewart, K. M. & Kelley, S. O. DNA-Passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23, 12783–12787 (2007).

    Article  CAS  Google Scholar 

  49. Jiang, L. et al. The coordination sites of phosphorothioate oligoG10 with Cd2+ and CdS nanoparticles. New J. Chem. 27, 823–826 (2003).

    Article  CAS  Google Scholar 

  50. Jin, J., Jiang, L., Chen, X., Yang, W. S. & Li, T. J. Construction of CdS nanoparticle chain on DNA template. Chin. J. Chem. 21, 208–210 (2003).

    Article  CAS  Google Scholar 

  51. Dittmer, W. U. & Simmel, F. C. Chains of semiconductor nanoparticles templated on DNA. Appl. Phys. Lett. 85, 633–635 (2004).

    Article  CAS  Google Scholar 

  52. Richter, J. Metallization of DNA. Physica E 16, 157–173 (2003).

    Article  CAS  Google Scholar 

  53. Gu, Q. et al. DNA nanowire fabrication. Nanotechnology 17, R14–R25 (2006).

    Article  CAS  Google Scholar 

  54. Petty, J. T., Zheng, J., Hud, N. V. & Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004).

    Article  CAS  Google Scholar 

  55. Ritchie, C. M. et al. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 111, 175–181 (2007).

    Article  CAS  Google Scholar 

  56. Shemer, G. et al. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 128, 11006–11007 (2006).

    Article  CAS  Google Scholar 

  57. Berti, L., Alessandrini, A. & Facci, P. DNA templated photoinduced silver deposition. J. Am. Chem. Soc. 127, 11216–11217 (2005).

    Article  CAS  Google Scholar 

  58. Berti, L., Alessandrini, A., Menozzi, C. & Facci, P. Controlled DNA-templated metal deposition: Towards ultra-thin nanowires. J. Nanosci. Nanotech. 6, 2382–2385 (2006).

    Article  CAS  Google Scholar 

  59. Gu, Q., Cheng, C. D., Suryanarayanan, S., Dai, K. & Haynie, D. T. DNA-templated fabrication of nickel nanocluster chains. Physica E 33, 92–98 (2006).

    Article  CAS  Google Scholar 

  60. Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850–852 (2004).

    Article  CAS  Google Scholar 

  61. Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated control of metal nanoparticle shape. J. Am. Chem. Soc. 127, 17814–17818 (2005).

    Article  CAS  Google Scholar 

  62. Liu, D. G. et al. RNA-mediated synthesis of palladium nanoparticles on Au surfaces. Langmuir 22, 5862–5866 (2006).

    Article  CAS  Google Scholar 

  63. Ma, N., Dooley, C. J. & Kelley, S. O. RNA-templated semiconductor nanocrystals. J. Am. Chem. Soc. 128, 12598–12599 (2006).

    Article  CAS  Google Scholar 

  64. Kumar, A. & Jakhmola, A. RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23, 2915–2918 (2007).

    Article  CAS  Google Scholar 

  65. Levina, L. et al. Efficient infrared-emitting PbS quantum dots grown on DNA and stable in aqueous solution and blood plasma. Adv. Mater. 17, 1854–1857 (2005).

    Article  CAS  Google Scholar 

  66. Wang, X. et al. Synthesis and characterization of peptide nucleic acid-platinum nanoclusters. Nanotechnology 17, 1177–1183 (2006).

    Article  CAS  Google Scholar 

  67. Seidel, R., Ciacchi, L. C., Weigel, M., Pompe, W. & Mertig, M. Synthesis of platinum cluster chains on DNA templates: Conditions for a template-controlled cluster growth. J. Phys. Chem. B 108, 10801–10811 (2004).

    Article  CAS  Google Scholar 

  68. Ciacchi, L. C., Mertig, M., Seidel, R., Pompe, W. & De Vita, A. Nucleation of platinum clusters on biopolymers: a first principles study of the molecular mechanisms. Nanotechnology 14, 840–848 (2003).

    Article  CAS  Google Scholar 

  69. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  70. Bittker, J. A., Phillips, K. J. & Liu, D. R. Recent advances in the in vitro evolution of nucleic acids. Curr. Opin. Chem. Biol. 6, 367–374 (2002).

    Article  CAS  Google Scholar 

  71. Fischler, M. et al. Formation of bimetallic Ag-Au nanowires by metallization of artificial DNA duplexes. Small 3, 1049–1055 (2007).

    Article  CAS  Google Scholar 

  72. Hammond, D. M. et al. DNA photography: An ultrasensitive DNA-detection method based on photographic techniques. Angew. Chem. Int. Edn 46, 4184–4187 (2007).

    Article  CAS  Google Scholar 

  73. Burley, G. A. et al. Directed DNA metallization. J. Am. Chem. Soc. 128, 1398–1399 (2006).

    Article  CAS  Google Scholar 

  74. Franzen, S., Cerruti, M., Leonard, D. N. & Duscher, G. The role of selection pressure in RNA-mediated evolutionary materials synthesis. J. Am. Chem. Soc. 29, 15340–15346 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Berti or Glenn A. Burley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, L., Burley, G. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nature Nanotech 3, 81–87 (2008). https://doi.org/10.1038/nnano.2007.460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing