Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Detection of heating in current-carrying molecular junctions by Raman scattering

Abstract

As the scaling of electronic components continues, local heating will have an increasing influence on the stability and performance of nanoscale electronic devices. In particular, the low heat capacity of molecular junctions means that it will be essential to understand local heating and heat conduction in these junctions1,2,3,4. Here we report a method for directly monitoring the effective temperature of current-carrying junctions with surface enhanced Raman spectroscopy (SERS) that involves measuring both the Stokes and anti-Stokes components of the Raman scattering. All the Raman-active modes in our system show similar heating as a function of bias at room temperature, which suggests fast vibrational relaxation processes inside the junctions. These results demonstrate the power of direct spectroscopic probing of heating and cooling processes in nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and conductance characteristics of the junctions.
Figure 2: Raman spectra and maps of a junction.
Figure 3: Teff(ν) as a function of bias for two representative junctions.
Figure 4: Schematic model of a charge-transfer Raman scattering process.

Similar content being viewed by others

References

  1. Montgomery, M. J., Todorov, T. N. & Sutton, A. P. Power dissipation in nanoscale conductors. J. Phys. Condens. Matter 14, 5377–5389 (2002).

    Article  Google Scholar 

  2. Galperin, M., Nitzan, A. & Ratner, M. A. Heat conduction in molecular transport junctions. Phys. Rev. B 75, 155312 (2007).

    Article  Google Scholar 

  3. Chen, Y. C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691–1694 (2003).

    Article  Google Scholar 

  4. Pecchia, A., Romano, G. & Di Carlo, A. Theory of heat dissipation in molecular electronics. Phys. Rev. B 75, 035401 (2007).

    Article  Google Scholar 

  5. Smit, R. H. M., Untiedt, C. & van Ruitenbeek, J. M. The high-bias stability of monatomic chains. Nanotechnology 15, S472–S478 (2004).

    Article  Google Scholar 

  6. Tsutsui, M., Kurokawa, S. & Sakai, A. Bias-induced local heating in Au atom-sized contacts. Nanotechnology 17, 5334–5338 (2006).

    Article  Google Scholar 

  7. Huang, Z. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotech. 2, 698–703 (2007).

    Article  Google Scholar 

  8. Wang, Z. H. et al. Ultrafast flash thermal conductance of molecular chains. Science 317, 787–790 (2007).

    Article  Google Scholar 

  9. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    Article  Google Scholar 

  10. Jiang, J., Bosnick, K., Maillard, M. & Brus, L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B 107, 9964–9972 (2003).

    Article  Google Scholar 

  11. Fromm, D. P. et al. Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 124, 061101 (2006).

    Article  Google Scholar 

  12. Zhou, Q., Li, X., Fan, Q., Zhang, X. & Zheng, J. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 45, 3970–3973 (2006).

    Article  Google Scholar 

  13. Ward, D. R. et al. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396–1400 (2007).

    Article  Google Scholar 

  14. Ward, D. R. et al. Simultaneous measurements of electronic conduction and Raman response in molecular junctions. Nano Lett. 8, 919–924 (2008).

    Article  Google Scholar 

  15. Tian, J. H. et al. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 128, 14748–14749 (2006).

    Article  Google Scholar 

  16. Nowak, A. M. & McCreery, R. L. In situ Raman spectroscopy of bias-induced structural changes in nitroazobenzene molecular electronic junctions. J. Am. Chem. Soc. 126, 16621–16631 (2004).

    Article  Google Scholar 

  17. Oron-Carl, M. & Krupke, R. Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes. Phys. Rev. Lett. 100, 127401 (2008).

    Article  Google Scholar 

  18. Shamai, T., Ophir, A. & Selzer, Y. Fabrication and characterization of ‘on-edge’ molecular junctions for molecular electronics. Appl. Phys. Lett. 91, 102108 (2007).

    Article  Google Scholar 

  19. Nordlander, P. & Le, F. Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl. Phys. B. 84, 35–41 (2006).

    Article  Google Scholar 

  20. Brolo, A. G., Sanderson, A. C. & Smith, A. P. Ratio of the surface-enhanced anti-Stokes scattering to the surface-enhanced Stokes–Raman scattering for molecules adsorbed on a silver electrode. Phys. Rev. B. 69, 045424 (2004).

    Article  Google Scholar 

  21. Persson, B. N. J. On the theory of surface-enhanced Raman scattering. Chem. Phys. Lett. 82, 561–565 (1981).

    Article  Google Scholar 

  22. Adrian, F. J. Charge transfer effects in surface enhanced Raman scattering. J. Chem. Phys. 77, 5302–5314 (1982).

    Article  Google Scholar 

  23. Lombardi, J. R., Birke, R. L., Lu, T. & Xu, J. Charge transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. J. Chem. Phys. 84, 4174–4180 (1986).

    Article  Google Scholar 

  24. Demuth, J. E. & Sanda, P. N. Observation of charge transfer states for pyridine chamisorbed on Ag. Phys. Rev. Lett. 47, 57–60 (1981).

    Article  Google Scholar 

  25. Heimel, G., Romaner, L., Zojer, E. & Brédas, J. L. Toward control of the metal–organic interfacial electronic structure in molecular electronics: A first-principles study on self-assembled monolayers of π-conjugated molecules on noble metals. Nano Lett. 7, 932–940 (2007).

    Article  Google Scholar 

  26. Marinyuk, V. V., Lazorenko-Manevich, R. M. & Kolotyrkin, Y. M. Nature of the interaction of adsorbate molecules with metal ad-atoms. J. Electroanal. Chem. 110, 111–118 (1980).

    Article  Google Scholar 

  27. Kambhampati, P. & Campion, A. Surface enhanced Raman scattering as a probe of adsorbate–substrate charge-transfer excitations. Surf. Sci. 427, 115–125 (1999).

    Article  Google Scholar 

  28. Todorov, T. N. Local heating in ballistic atomic scale contacts. Phil. Mag. B 9, 965–973 (1998).

    Article  Google Scholar 

  29. Schulze, G. et al. Resonant electron heating and molecular phonon cooling in single C60 junctions. Phys. Rev. Lett. 100, 136801 (2008).

    Article  Google Scholar 

  30. D'Agosta, R., Sai, N. & Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 6, 2935–2938 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Nitzan from TAU for very insightful discussions. Support by the GIF young scientist program for Y.S. is gratefully acknowledged. T.S. thanks the Israeli Ministry of Science and Technology for an Eshkol fellowship. The research was supported by the Israel Science foundation under grant no. 987/05 (OC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ori Cheshnovsky or Yoram Selzer.

Supplementary information

Supplementary Information

Supplementary Information (PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, Z., Shamai, T., Ophir, A. et al. Detection of heating in current-carrying molecular junctions by Raman scattering. Nature Nanotech 3, 727–732 (2008). https://doi.org/10.1038/nnano.2008.304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.304

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing