Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon nanotubes as templates for polymerized lipid assemblies

Abstract

Amphiphilic molecules—molecules that have both hydrophobic and hydrophilic properties—can self-assemble in water to form diverse structures such as micelles, vesicles and tubes1,2,3, and these nanostructures can be used for delivering drugs4,5, stabilizing membrane proteins6 or as nanoreactors7. We have previously shown that lipids can self-organize on the surface of single-walled carbon nanotubes into regular ring-shaped assemblies8. Here we show that these lipid assemblies can be polymerized and isolated from the nanotube template by application of an electric field. We also demonstrate that these assemblies are monodispersed, water-soluble, and can dissolve various hydrophobic rylene dyes, fullerenes and membrane proteins. The stability of these constructs and their diverse applications will be useful in the fields of cosmetics, medicine and material sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymerization of the ring-shaped nano-constructs on the surface of SWNTs.
Figure 2: Separating the nano-constructs from the surface of the SWNTs.
Figure 3: Solubilizing hydrophobic rylene dyes in the nano-constructs.
Figure 4: Solubilizing fullerenes using the nano-constructs.
Figure 5: Solubilizing membrane proteins in the nano-constructs.

Similar content being viewed by others

References

  1. Chen, D. & Jiang, M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 38, 494–502 (2005).

    Article  Google Scholar 

  2. Shimizu, T., Masuda, M. & Minamikawa, H. Supramolecular nanotubes architectures based on amphiphilic molecules. Chem. Rev. 105, 1401–1443 (2005).

    Article  Google Scholar 

  3. Zhou, Y. & Shimizu, T. Lipid nanotubes: A unique template to create diverse one-dimensional nanostructures. Chem. Mater. 20, 625–633 (2008).

    Article  Google Scholar 

  4. Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nature Rev. Cancer 5, 161–171 (2005).

    Article  Google Scholar 

  5. Duncan, R. The dawning era of polymer therapeutics. Nature Rev. Drug Discov. 2, 347–360 (2003).

    Article  Google Scholar 

  6. Sanders, C. R., Hoffmann, A. K., Gray, D. N., Keyes, M. H. & Ellis, C. D. French Swimwear for membrane proteins. ChemBioChem 5, 423–426 (2004).

    Article  Google Scholar 

  7. Dwars, T., Paetzold, E. & Oehme, G. Reactions in micellar systems. Angew. Chem. Int. Ed. 44, 7174–7199 (2005).

    Article  Google Scholar 

  8. Richard, C., Balavoine, F., Schultz, P., Ebbesen, T. W. & Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300, 775–778 (2003).

    Article  Google Scholar 

  9. Ji, Q., Kamiya, S., Jung, J.-H. & Shimizu, T. Self-assembly of glycolipids on silica nanotube templates yielding hybrid nanotubes with concentric organic and inorganic layers. J. Mater. Chem. 15, 743–748 (2005).

    Article  Google Scholar 

  10. Wang, Y., Angelatos, A. S. & Caruso, F. Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20, 848–858 (2008).

    Article  Google Scholar 

  11. Artyukhin, A. B. et al. Functional one-dimensional lipid bilayers on carbon nanotubes templates. J. Am. Chem. Soc. 127, 7538–7542 (2005).

    Article  Google Scholar 

  12. Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    Article  Google Scholar 

  13. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  Google Scholar 

  14. Balavoine, F. et al. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew. Chem. Int. Ed. 38, 1912–1915 (1999).

    Article  Google Scholar 

  15. Qiao, R. & Ke, P. C. Lipid–carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc. 128, 13656–13657 (2006).

    Article  Google Scholar 

  16. Wu, Y. et al. Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B 110, 2475–2478 (2006).

    Article  Google Scholar 

  17. Yurekli, K., Mitchell, C. A. & Krishnamoorti, R. Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J. Am. Chem. Soc. 126, 9902–9903 (2004).

    Article  Google Scholar 

  18. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T. & Yodh, A. G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269–273 (2003).

    Article  Google Scholar 

  19. Ke, P. U. Fiddling the string of carbon nanotubes with amphipiles. Phys. Chem. Chem. Phys. 9, 439–447 (2007).

    Article  Google Scholar 

  20. Matarredona, O. et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003).

    Article  Google Scholar 

  21. O'Connell, M. J. et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001).

    Article  Google Scholar 

  22. Fabian, J. & Zahradnik, R. The search for highly coloured organic compounds. Angew. Chem. Int. Ed. 28, 677–694 (1989).

    Article  Google Scholar 

  23. Lee, S. K. et al. Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene and quaterrylene diimides in aprotic solution. J. Am. Chem. Soc. 121, 3513–3520 (1999).

    Article  Google Scholar 

  24. Liu, S., Lu, Y.-J., Kappes, M. M. & Ibers, J. A. The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110 K. Science 254, 408–410 (1991).

    Article  Google Scholar 

  25. Georgakilas, V. et al. Supramolecular self-assembled fullerene nanostructures. Proc. Natl Acad. Sci. USA 99, 5075–5080 (2002).

    Article  Google Scholar 

  26. Sanders, C. R. & Scott Prosser, R. Bicelles: A model membrane system for all seasons? Structure 6, 1227–1234 (1998).

    Article  Google Scholar 

  27. Schafmeister, C. E., Miercke, L. J. & Stroud, R. M. Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science 262, 734–738 (1993).

    Article  Google Scholar 

  28. McGregor, C.-L. et al. Lipopeptide detergents designed for the structural study of membrane proteins. Nature Biotechnol. 21, 171–176 (2003).

    Article  Google Scholar 

  29. Popot, J.-L. et al. Amphipol: Polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60, 1559–1574 (2003).

    Article  Google Scholar 

  30. Sanders, C. R. & Myers, J. K. Disease-related misassembly of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 33, 25–51 (2004).

    Article  Google Scholar 

  31. Braun, V. & Mahren, S. Transmembrane transcriptional control (surface signalling) of the Escherichia coli Fec type. FEMS Microbiol. Rev. 29, 673–684 (2005).

    Article  Google Scholar 

  32. Schalk, I. J. et al. Iron-free pyoverdin binds to its outer membrane receptor FpvA in Pseudomonas aeruginosa: A new mechanism for membrane iron transport. Mol. Microbiol. 39, 351–361 (2001).

    Article  Google Scholar 

  33. Rigaud, J.-L. et al. Bio-beads: An efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol. 118, 226–235 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.S. performed the TEM experiments. H.C. performed the protein solubilization experiments. S.M. and C.M. conceived and designed the experiments.

Corresponding author

Correspondence to Charles Mioskowski.

Ethics declarations

Competing interests

S. R., P. S. and C. M. have filed a patent application on the process described in this work.

Supplementary information

Supplementary Information

Supplementary Information (PDF 582 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thauvin, C., Rickling, S., Schultz, P. et al. Carbon nanotubes as templates for polymerized lipid assemblies. Nature Nanotech 3, 743–748 (2008). https://doi.org/10.1038/nnano.2008.318

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.318

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing