Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanomechanical detection of itinerant electron spin flip

Abstract

Electrons and other fundamental particles have an intrinsic angular momentum called spin. A change in the spin state of such a particle is therefore equivalent to a mechanical torque. This spin-induced torque is central to our understanding of experiments1,2 ranging from the measurement of the angular momentum of photons3 and the g-factor of metals4,5,6,7 to magnetic resonance8 and magnetization reversal in magnetic multilayers8,9,10,11,12,13,14,15. When a spin-polarized current passes through a metallic nanowire in which one half is ferromagnetic and the other half is nonmagnetic, the spins of the itinerant electrons are ‘flipped’ at the interface between the two regions to produces a torque. Here, we report direct measurement of this mechanical torque in an integrated nanoscale torsion oscillator, and measurements of the itinerant electron spin polarization that could yield new information on the itinerancy of the d-band electrons. The unprecedented torque sensitivity of 1 × 10−22 N-m Hz−1/2 may have applications in spintronics and precision measurements of charge–parity-violating forces16,17, and might also enable experiments on the untwisting of DNA18 and torque-generating molecules19,20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spin-torsion mechanism.
Figure 2: The spin-torsion oscillator.
Figure 3: The response of devices with and without the FM–NM interface.
Figure 4: Voltage response for the gold–cobalt sample.

Similar content being viewed by others

References

  1. Richardson, O. W. A mechanical effect accompanying magnetization. Phys. Rev. 26, 248–253 (1908).

    Google Scholar 

  2. Einstein, A. & de Hass, W. J. Experimenteller Nachweis der ampere'schen molekularstroeme. Verhandlungen der Deutschen Physikalischen Gesellschaft 17, 152–170 (1915).

    Google Scholar 

  3. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  Google Scholar 

  4. Barnett, S. J. New researches in gyromagnetism. Phys. Rev. 66, 224–225 (1944).

    Article  Google Scholar 

  5. Kittel, C. On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substances. Phys. Rev. 76, 743–748 (1949).

    Article  Google Scholar 

  6. Scott, G. G. A precise mechanical measurement of the gyromagnetic ratio of iron. Phys. Rev. 82, 542–547 (1952).

    Article  Google Scholar 

  7. Wallis, T. M., Moreland, J. & Kabos, P. Einstein-de Haas effect in a NiFe film deposited on a microcantilever. Appl. Phys. Lett. 89, 122502 (2006).

    Article  Google Scholar 

  8. Ascoli, C. et al. Micromechanical detection of magnetic resonance by angular momentum absorption. Appl. Phys. Lett. 69, 3920–3922 (1996).

    Article  Google Scholar 

  9. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  10. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

  11. Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).

    Article  Google Scholar 

  12. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  13. Tsoi, M. et al. Generation and detection of phase-coherent current-driven magnons in magnetic multilayers. Nature 406, 46–48 (2000).

    Article  Google Scholar 

  14. Wegrowe, J.-E. et al. Exchange torque and spin transfer between spin-polarized current and ferromagnetic layers. Appl. Phys. Lett. 80, 3775–3777 (2002).

    Article  Google Scholar 

  15. Stiles, M. D. & Zangwill, A. Anatomy of spin-transfer torque. Phys. Rev. B 65, 014407 (2002).

    Article  Google Scholar 

  16. Pospelov, M. & Romanis, M. Lorentz invariance on trial. Physics Today 40, 40–46 (July 2004).

    Article  Google Scholar 

  17. Heckel, B. R. et al. New CP-violation and preferred-frame tests with polarized electrons. Phys. Rev. Lett. 97, 021603 (2006).

    Article  Google Scholar 

  18. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA, Nature 424, 338–341 (2003).

    Article  Google Scholar 

  19. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  Google Scholar 

  20. Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–447 (2000).

    Article  Google Scholar 

  21. Johnson, M. & Silsbee, R. H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987).

    Article  Google Scholar 

  22. Johnson, M. & Silsbee, R. H. Coupling of electronic charge and spin at a ferromagnetic–paramagnetic metal interface. Phys. Rev. B 37, 5312–5325 (1988).

    Article  Google Scholar 

  23. Fabian, J. & Das Sarma, S. Spin relaxation of conduction electrons. J. Vac. Sci. Technol. B 17, 1708–1715 (1999).

    Article  Google Scholar 

  24. Mohanty, P., Zolfagharkhani, G., Kettemann, S. & Fulde, P. Spin-mechanical torsion device for detection and control of spin by nanomechanical torque. Phys. Rev. B 70, 195301 (2004).

    Article  Google Scholar 

  25. Kovalev, A. A., Bauer, G. E. W. & Brataas, A. Current-driven ferromagnetic resonance, mechanical torques and rotary motion in magnetic nanostructures. Phys. Rev. B 75, 014430 (2007).

    Article  Google Scholar 

  26. Fulde, P. & Kettemann, S. Spin-flip torsion balance. Ann. Phys. 7, 214–216 (1998).

    Article  Google Scholar 

  27. Upadhyay, S. K., Palanisami, A., Louie, R. N. & Buhrman, R. A. Probing ferromagnets with Andreev reflection. Phys. Rev. Lett. 81, 3247–3250 (1998).

    Article  Google Scholar 

  28. Soulen, R. J. et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    Article  Google Scholar 

  29. Volpe, G. & Petrov, D. Torque detection using brownian fluctuations. Phys. Rev. Lett. 97, 210603 (2006).

    Article  Google Scholar 

  30. Weiss, P. Magnetic overthrow. Science News 169, 11–13 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Science Foundation (Division of Material Research (DMR)-0346707) under the NSF-European Community (EC) Cooperative Activity in Materials Research (Material World Network). S.K. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) (Sonderforschungsbereich (SFB)668 B3 and DFG SFB508 B9). P.D. acknowledges support from the Condensed Matter Theory visitors program at Boston University, the Centre National de la Recherche Scientifique/Direction des Relations Internationales (CNRS/DREI) (contract no. 4024) and Agence Nationale pour la Recherche (ANR)-PNANO Quspin. The authors thank M. Johnson, I. Zutic, T. Wehling, J. Wei, L. Saminadayar, C. Bäuerle and C. Chamon for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Pritiraj Mohanty.

Supplementary information

Supplementary Information

Supplementary Information (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolfagharkhani, G., Gaidarzhy, A., Degiovanni, P. et al. Nanomechanical detection of itinerant electron spin flip. Nature Nanotech 3, 720–723 (2008). https://doi.org/10.1038/nnano.2008.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing