Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wideband-tuneable, nanotube mode-locked, fibre laser

Abstract

Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1,2,3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4,5,6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 µm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11,12,13,14,15,16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 µm, and then use it to demonstrate a 2.4 ps Er3+-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical characterization of the composite films.
Figure 2: Laser setup and mode-locker assembly.
Figure 3: Wavelength tuning.
Figure 4: Mode-locking characteristics.

Similar content being viewed by others

References

  1. Letokhov, V. S. Laser biology and medicine. Nature 316, 325–330 (1985).

    Article  Google Scholar 

  2. Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures 2nd edn (Springer-Verlag, 1999).

    Book  Google Scholar 

  3. Keller, U. Recent developements in compact ultrafast lasers. Nature 424, 831–838 (2003).

    Article  Google Scholar 

  4. Digonnet, M. J. F. Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).

    Book  Google Scholar 

  5. Agrawal, G. P. Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

    Google Scholar 

  6. Keller, U. et al. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 2, 435–453 (1996).

    Article  Google Scholar 

  7. Grange, R. et al. Nonlinear absorption edge properties of 1.3-μm GaInNAs saturable absorbers. Appl. Phys. Lett. 87, 132103 (2005).

    Article  Google Scholar 

  8. Rutz, A. et al. Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers. J. Crys. Grow. 301–302, 570–574 (2007).

    Article  Google Scholar 

  9. Calvez, S. et al. GaInNAs/GaAs Bragg-mirror-based structures for novel 1.3 µm device applications. J. Crys. Grow. 268, 457–465 (2004).

    Article  Google Scholar 

  10. Rutz, A. et al. 1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers. Electron. Lett. 41, 321–323 (2005).

    Article  Google Scholar 

  11. Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quant. Electron. 10, 137–146 (2004).

    Article  Google Scholar 

  12. Nicholson, J. W., Windeler, R. S. & DiGiovanni, D. J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 15, 9176–9183 (2007).

    Article  Google Scholar 

  13. Il'ichev, N. N., Obraztsova, E. D., Pashinin, P. P., Konov, V. I. & Garnov, S. V. Self-mode locking in a F2:LiF laser by means of a passive switch based on single-wall carbon nanotubes. Quant. Electron. 34, 785–786 (2004).

    Article  Google Scholar 

  14. Song, Y. W., Set, S. Y., Yamashita, S., Chee, S. G. & Kotake, T. 1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes. IEEE Photon. Tech. Lett. 17, 1623–1625 (2005).

    Article  Google Scholar 

  15. Dalle Valle, G. et al. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 89, 231115 (2006).

    Article  Google Scholar 

  16. Rozhin, A. G. et al. Generation of ultra-fast laser pulses using nanotube mode-lockers. Phys. Stat. Sol. (b) 243, 3551–3555 (2006).

    Article  CAS  Google Scholar 

  17. Haiml, M. et al. Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies. Appl. Phys. Lett. 74, 3134–3136 (1999).

    Article  Google Scholar 

  18. Jacobovitz-Veselka, G. R., Keller, U. & Asom, M. T. Broadband fast semiconductor saturable absorber. Opt. Lett. 17, 1791–1793 (1992).

    Article  Google Scholar 

  19. Kopf, D., Prasad, A., Zhang, G., Moser, M. & Keller, U. Broadly tunable femtosecond Cr:LiSAF laser. Opt. Lett. 22, 621–623 (1997).

    Article  Google Scholar 

  20. Kärtner, F. X., Jung, I. D. & Keller, U. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quant. Electron. 2, 540–556 (1996).

    Article  Google Scholar 

  21. Schön, S., Haiml, M. & Keller, U. Ultrabroadband AIGaAs/CaF2 semiconductor saturable absorber mirrors. Appl. Phys. Lett. 77, 782–784 (2000).

    Article  Google Scholar 

  22. Fluck, R. et al. Broadband saturable absorber for 10-fs pulse generation. Opt. Lett. 21, 743–745 (1996).

    Article  Google Scholar 

  23. Gomes, L. A., Orsila, L., Jouhti, T. & Okhotnikov, O. G. Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quant. Electron. 10, 129–136 (2004).

    Article  Google Scholar 

  24. Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).

    Article  Google Scholar 

  25. Sakakibara, Y., Tatsuura, S., Kataura, H., Tokumoto, M. & Achiba, Y. Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation. Jpn J. Appl. Phys. 42, L494–L496 (2003).

    Article  Google Scholar 

  26. Lauret, J. S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

    Article  Google Scholar 

  27. Fong, K. H. et al. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 32, 38–40 (2007).

    Article  Google Scholar 

  28. Rozhin, A. G. et al. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Appl. Phys. Lett. 88, 051118 (2006).

    Article  Google Scholar 

  29. Song, Y. W., Yamashita, S., Goh, C. S. & Set, S. Y. Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes. Opt. Lett. 32, 430–432 (2007).

    Article  Google Scholar 

  30. Schibli, T. et al. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 13, 8025–8031 (2005).

    Article  Google Scholar 

  31. Song, Y. W., Yamashita, S. & Maruyama, S. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett. 92, 021115 (2008).

    Article  Google Scholar 

  32. Kieu, K. & Mansuripur, M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett. 32, 2242–2244 (2007).

    Article  Google Scholar 

  33. Garmire, E. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quant. Electron. 6, 1094–1110 (2000).

    Article  Google Scholar 

  34. Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Springer, 1983).

    Google Scholar 

  35. Tamura, K., Doerr, C. R., Haus, H. A. & Ippen, E. P. Soliton fiber ring laser stabilization and tuning with a broad intracavity filter. IEEE Photon. Technol. Lett. 6, 697–699 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Isaac Newton trust, The Royal Society-Brian Mercer Award for Innovation and the European Research Council Grant NANOPOTS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Rozhin, A., Scardaci, V. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotech 3, 738–742 (2008). https://doi.org/10.1038/nnano.2008.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing