Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Borosilicate nanoparticles prepared by exothermic phase separation

This article has been updated

Abstract

Nanoparticles play an important role in chemical and biological sciences due to their ability to bind and concentrate many molecules on their surface1. Polymers1,2 and silica3,4,5,6,7 are widely used to make nanoparticles, but efforts to make nanoparticles from borosilicate glass—which exhibits high tolerance to chemicals and solvents, combined with excellent mechanical and thermal stability8,9,10—have proved unsuccessful. Here we show that borosilicate nanoparticles (100–500 nm in size) can be synthesized by simply mixing a silicon–boron binary oxide solution, prepared using non-aqueous organic solvents, with water. This induces a vigorous exothermic phase separation in which borosilicate nanoparticles burst out of a silica phase. In addition to potential applications in the life sciences, monodisperse borosilicate particles could also have applications in the production of photonic bandgap devices with high optical contrast, contrast agents for ultrasonic microscopy or chemical filtration membranes11,12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Process for preparation of the borosilicate sol and reaction products formed when mixing the sol with water.
Figure 2: Characterization of the nanoparticles by HRTEM and EELS.
Figure 3: Characterization of the reaction products by FTIR spectroscopy.
Figure 4: Solid- and liquid-state NMR spectra for characterization of the reaction process.
Figure 5: Solid-state NMR spectra of the nanoparticles.

Similar content being viewed by others

Change history

  • 23 September 2008

    The original version of this letter published online has now been corrected at the end of the abstract, in Fig. 1b, Fig. 5 caption, and in the 'NMR Spectroscopy' section of the Methods. These corrections have been made for all versions of the letter.

References

  1. Kawaguchi, H. Functional polymer microspheres. Prog. Polym. Sci. 25, 1171–1210 (2000).

    Article  CAS  Google Scholar 

  2. McCarthy, J. R., Perez, J. M., Bruckner, C. & Weissleder, R. Polymeric nanoparticle preparation that eradicates tumours. Nano Lett. 5, 2552–2556 (2005).

    Article  CAS  Google Scholar 

  3. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Article  Google Scholar 

  4. Barbe, C. et al. Silica particles: A novel drug-delivery system. Adv. Mater. 16, 1959–1966 (2004).

    Article  CAS  Google Scholar 

  5. Beck, C., Hartl, W. & Hempelmann, R. Covalent surface functionalization and self-organization of silica nanoparticles. Angew. Chem. Int. Ed. 38, 1297–1300 (1999).

    Article  CAS  Google Scholar 

  6. Lu, C. W. et al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labelling. Nano Lett. 7, 149–154 (2007).

    Article  CAS  Google Scholar 

  7. Iskandar, F., Mikrajuddin & Okuyama, K. In situ production of spherical silica particles containing self-organized mesopores. Nano Lett. 1, 231–234 (2001).

    Article  CAS  Google Scholar 

  8. Plodinec, M. J. Borosilicate glasses for nuclear waste immobilization. Glass Technol. 41, 186–192 (2000).

    CAS  Google Scholar 

  9. Ehrt, D. Structure, properties and applications of borate glasses. Glass Technol. 41, 182–185 (2000).

    CAS  Google Scholar 

  10. Newton, R. G. & Paul, A. A new approach to predicting the durability of glasses from their chemical compositions. Glass Technol. 21, 307–309 (1980).

    CAS  Google Scholar 

  11. Sharrna, P., Brown, S., Walter, G., Santra, S. & Moudgil, B. Nanoparticles for bioimaging. Adv. Colloid Interface Sci. 123, 471–485 (2006).

    Article  Google Scholar 

  12. Liu, J. et al. Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol. 51, 2179–2189 (2006).

    Article  CAS  Google Scholar 

  13. Muller, M., Zentel, R., Maka, T., Romanov, S. G. & Torres, C. M. S. Dye-containing polymer beads as photonic crystals. Chem. Mater. 12, 2508–2512 (2000).

    Article  Google Scholar 

  14. Benbahouche, S., Roumili, F., Seghir, A. & Zegadi, R. Effect of water on the transmittance of glass plates with eroded surfaces. J. Eur. Ceram. Soc. 26, 1673–1678 (2006).

    Article  CAS  Google Scholar 

  15. Zha, C., Atkins, G. R. & Masters, A. F. Preparation and spectroscopy of anhydrous borosilicate sols and their application to thin films. J. Non-Cryst. Solids 242, 63–67 (1998).

    Article  CAS  Google Scholar 

  16. Beckett, M. A., Rugen-Hankey, M. P. & Varma, K. S. Formation of borosilicate glasses from silicon alkoxides and metaborate esters in dry non-aqueous solvents. J. Sol-Gel Sci. Technol. 39, 95–101 (2006).

    Article  CAS  Google Scholar 

  17. Beckett, M. A., Rugen-Hankey, M. P. & Varma, K. S. Trimethoxyboroxine as an oxygen-transfer reagent: a non-aqueous sol-gel route to alkali-free borosilicate glass. Chem. Commun. 1499–1500 (2000).

  18. Beckett, M. A. et al. [π]-Bonding in B–O ring species: Lewis acidity of Me3B3O3, synthesis of amine Me3B3O3 adducts, and the crystal and molecular structure of Me3B3O3.NH2iBu·MeB(OH)2 . J. Organometall. Chem. 585, 7–11 (1999).

    Article  CAS  Google Scholar 

  19. Sharp, K. G. & Scherer, G. W. Interaction of formic acid with the silica gel network. J. Sol-Gel Sci. Technol. 8, 165–171 (1997).

    CAS  Google Scholar 

  20. Sauer, H., Brydson, R., Rowley, P. N., Engel, W. & Thomas, J. M. Determination of coordinations and coordination-specific site occupancies by electron energy-loss spectroscopy—an investigation of boron oxygen compounds. Ultramicroscopy 49, 198–209 (1993).

    Article  CAS  Google Scholar 

  21. Yang, G., Mobus, G. & Hand, R. J. EELS study of boron coordination in alkali borosilicate glasses under extensive electron irradiation. Phys. Chem. Glasses—Europ. J. Glass Sci. Technol. Part B 47, 507–512 (2006).

    CAS  Google Scholar 

  22. Villegas, M. A. & Navarro, J. M. F. Characterization of B2O3–SiO2 glasses prepared via sol-gel. J. Mater. Sci. 23, 2464–2478 (1988).

    Article  CAS  Google Scholar 

  23. Wood, D. L. & Rabinovich, E. M. Study of alkoxide silica-gels by infrared-spectroscopy. Appl. Spectrosc. 43, 263–267 (1989).

    Article  CAS  Google Scholar 

  24. Tsvetkova, I. N. et al. Sol-gel synthesis and investigation of hybrid organic–inorganic borosilicate nanocomposites. Glass Phys. Chem. 32, 218–227 (2006).

    Article  CAS  Google Scholar 

  25. Irwin, A. D., Holmgren, J. S., Zerda, T. W. & Jonas, J. Spectroscopic investigations of borosiloxane bond formation in the sol-gel process. J. Non-Cryst. Solids 89, 191–205 (1987).

    Article  CAS  Google Scholar 

  26. Kidd, R. G. in NMR of Newly Accessible Nuclei Vol. 2 (ed. Laszlo, P.) 49–77 (Academic Press, New York, 1983).

    Google Scholar 

  27. Kroeker, S. & Stebbins, J. F. Three-coordinated boron-11 chemical shifts in borates. Inorg. Chem. 40, 6239–6246 (2001).

    Article  CAS  Google Scholar 

  28. van Wüllen, L., Müller-Warmuth, W., Papageorgiou, D. & Pentinghaus, H. J. Characterization and structural developments of gel-derived borosilicate glasses: a multinuclear MAS-NMR study. J. Non-Cryst. Solids 171, 53–67 (1994).

    Article  Google Scholar 

  29. Martens, R. & Müller-Warmuth, W. Structural groups and their mixing in borosilicate glasses of various compositions—an NMR study. J. Non-Cryst. Solids 265, 167–175 (2000).

    Article  CAS  Google Scholar 

  30. Prasad, S. et al. Solid-state multinuclear magnetic resonance investigation of Pyrex((R)). J. Non-Cryst. Solids 352, 2834–2840 (2006).

    Article  CAS  Google Scholar 

  31. Du, L. S. & Stebbins, J. F. Network connectivity in aluminoborosilicate glasses: A high-resolution B-11, Al-27 and O-17 NMR study. J. Non-Cryst. Solids 351, 3508–3520 (2004).

    Article  Google Scholar 

  32. Massiot, D. et al. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 40, 70–76 (2002).

    Article  CAS  Google Scholar 

  33. Assink, R. A. & Kay, B. D. Study of sol-gel chemical-reaction kinetics by NMR. Annu. Rev. Mater. Sci. 21, 491–513 (1991).

    Article  CAS  Google Scholar 

  34. Nanba, T., Nishimura, M. & Miura, Y. A theoretical interpretation of the chemical shift of Si-29 NMR peaks in alkali borosilicate glasses. Geochim. Cosmochim. Acta 68, 5103–5111 (2004).

    Article  CAS  Google Scholar 

  35. Parkinson, B. G. et al. Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman spectroscopy. J. Non-Cryst. Solids 354, 1936–1942 (2008).

    Article  CAS  Google Scholar 

  36. Hall, D. G. in Boronic Acids (ed. Hall, D. G.) 1–99 (Wiley-VCH, Weinheim, 2006).

Download references

Acknowledgements

The authors acknowledge aid from the Swiss National Science Foundation (grant no. 200020-101466) and thank A.-S. Chauvin, P. Pechy and especially A. Abraham for help with the NMR experiments and Y. Moser for help with the temperature measurements.

Author information

Authors and Affiliations

Authors

Contributions

V.K.P., J.-B.O. and A.S. conceived, designed and performed the experiments. V.K.P., J.-B.O., M.C. and M.A.M.G. analysed the data. V.K.P. and M.A.M.G. co-wrote the paper. M.C. was responsible for the EELS analysis.

Corresponding author

Correspondence to Martin A. M. Gijs.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parashar, V., Orhan, JB., Sayah, A. et al. Borosilicate nanoparticles prepared by exothermic phase separation. Nature Nanotech 3, 589–594 (2008). https://doi.org/10.1038/nnano.2008.262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing