Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Patterning of light-emitting conjugated polymer nanofibres

Abstract

Organic materials have revolutionized optoelectronics by their processability, flexibility and low cost, with application to light-emitting devices for full-colour screens1, solar cells2 and lasers3,4. Some low-dimensional organic semiconductor structures exhibit properties resembling those of inorganics, such as polarized emission5 and enhanced electroluminescence6. One-dimensional metallic, III–V and II–VI nanostructures have also been the subject of intense investigation7,8 as building blocks for nanoelectronics and photonics. Given that one-dimensional polymer nanostructures, such as polymer nanofibres, are compatible with sub-micrometre patterning capability9 and electromagnetic confinement within subwavelength volumes8, they can offer the benefits of organic light sources to nanoscale optics. Here we report on the optical properties of fully conjugated, electrospun polymer nanofibres. We assess their waveguiding performance and emission tuneability in the whole visible range. We demonstrate the enhancement of the fibre forward emission through imprinting periodic nanostructures using room-temperature nanoimprint lithography, and investigate the angular dispersion of differently polarized emitted light.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization and optical properties of as-produced conjugated polymer nanofibres.
Figure 2: Nanofibre waveguiding properties.
Figure 3: Nanopatterning of single light-emitting polymer nanofibres.
Figure 4: Emission properties of nanopatterned fibres.

Similar content being viewed by others

References

  1. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  2. Yu, G. et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  CAS  Google Scholar 

  3. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  CAS  Google Scholar 

  4. McGehee, M. D. & Heeger, A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 12, 1655–1668 (2000).

    Article  CAS  Google Scholar 

  5. Nguyen, T. -Q. et al. Control of energy transfer in oriented conjugated polymer–mesoporous silica composites. Science 288, 652–656 (2000).

    Article  CAS  Google Scholar 

  6. Zhang, X., Kale, D. M. & Jenekhe, S. A. Electroluminescence of multicomponent conjugated polymers. 2. photophysics and enhancement of electroluminescence from blends of polyquinolines. Macromolecules 35, 382–393 (2002).

    Article  CAS  Google Scholar 

  7. Duan, X. et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  CAS  Google Scholar 

  8. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  CAS  Google Scholar 

  9. Menard, E. et al. Micro and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).

    Article  CAS  Google Scholar 

  10. Liu, H. et al. Electrospun polymer nanofibres as subwavelength optical waveguides incorporating quantum dots. Small 2, 495–499 (2006).

    Article  CAS  Google Scholar 

  11. Quochi, F. et al. Gain amplification and lasing properties of individual organic nanofibres. Appl.Phys. Lett. 88, 041106 (2006).

    Article  Google Scholar 

  12. Liu, J., Sheina, E., Kowalewski, T. & McCullough, R. D. Tuning the electrical conductivity and self-assembly of regioregular polythiophene by block copolymerization: nanowire morphologies in new di- and tri-block copolymers. Angew. Chem. Int. Ed. 41, 329–332 (2002).

    Article  CAS  Google Scholar 

  13. Noy, A. et al. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett. 2, 109–112 (2002).

    Article  CAS  Google Scholar 

  14. Reneker, D. H. & Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996).

    Article  CAS  Google Scholar 

  15. MacDiarmid, A. G. et al. Electrostatically-generated nanofibres of electronic polymers. Synth. Met. 119, 27–30 (2001).

    Article  CAS  Google Scholar 

  16. Dzenis, Y. Spinning continuous fibres for nanotechnology. Science 304, 1917–1919 (2004).

    Article  CAS  Google Scholar 

  17. Moran-Mirabal, J. M. et al. Electrospun light-emitting nanofibres. Nano Lett. 7, 458–463 (2007).

    Article  CAS  Google Scholar 

  18. Kakade, M. et al. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibres. J. Am. Chem. Soc. 129, 2777–2782 (2007).

    Article  CAS  Google Scholar 

  19. Madhugiri, S. et al. Electrospun MEH-PPV/SBA-15 composite nanofibres using a dual syringe method. J. Am. Chem. Soc. 125, 14531–14538 (2003).

    Article  CAS  Google Scholar 

  20. Li, D., Babel, A., Jenekhe, S. A. & Xia, Y. Nanofibres of conjugated polymers prepared by electrospinning with a two-capillary spinneret. Adv. Mater. 16, 2062–2066 (2004).

    Article  CAS  Google Scholar 

  21. Wei, M., Lee, J., Kang, B. & Mead, J. Preparation of core–sheath nanofibres from conducting polymer blends. Macromol. Rapid Commun. 26, 1127–1132 (2005).

    Article  CAS  Google Scholar 

  22. Babel, A., Li, D., Xia, Y. & Jenekhe, S. A. Electrospun nanofibres of blends of conjugated polymers: morphology, optical properties and field-effect transistors. Macromolecules 38, 4705–4711 (2005).

    Article  CAS  Google Scholar 

  23. Jang, S. -H. et al. Welded electrochromic conductive polymer nanofibres by electrostatic spinning. Adv. Mater. 17, 2177–2180 (2005).

    Article  CAS  Google Scholar 

  24. Chronakis, S., Grapenson, S. & Jakob, A. Conductive polypyrrole nanofibres via electrospinning: Electrical and morphological properties. Polymer 47, 1597–1603 (2006).

    Article  CAS  Google Scholar 

  25. Lee, K. H. et al. Characterization of nano-structured poly(e-caprolactone) nonwoven mats via electrospinning. Polymer 44, 1287–1294 (2003).

    Article  CAS  Google Scholar 

  26. Caroll, O. D., Lieberwirth, I. & Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nature Nanotech. 2, 180–184 (2007).

    Article  Google Scholar 

  27. Mele, E. et al. Multilevel, room-temperature nanoimprint lithography for conjugated polymer-based photonics. Nano Lett. 5, 1915–1919 (2005).

    Article  CAS  Google Scholar 

  28. Hu, D., Yu, J. & Barbara, P. F. Single-molecule spectroscopy of the conjugated polymer MEH-PPV. J. Am. Chem. Soc. 121, 6936–6937 (1999).

    Article  CAS  Google Scholar 

  29. Turnbull, G. A. et al. Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser. Phys. Rev. B 64, 125122 (2001).

    Article  Google Scholar 

  30. Spehr, T. et al. Organic solid-state ultraviolet-laser based on spiro-terphenyl. Appl. Phys. Lett. 87, 161103 (2005).

    Article  Google Scholar 

  31. Mele, E. et al. Polymeric distributed feedback lasers by room-temperature nanoimprint lithography. Appl. Phys. Lett. 89, 131109 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Cometta and M. Brich (Zeiss) for the confocal microscopy measurements. F.D.B. acknowledges helpful discussions with F. Ko about the electrostatic spinning technique.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and D.P. conceived and designed the experiments. F.D.B and S.P. performed the electrospinning experiments. L.P. performed the AFM measurements and analysed the data. R.S. performed the SEM measurements, realized the NIL masters and analysed the data. E.M. carried out the imprinting experiments. A.C. was responsible for the optical characterization. E.M., L.P., A.C., R.C. and D.P. contributed materials and analysis tools. F.D.B. and D.P. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dario Pisignano.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Benedetto, F., Camposeo, A., Pagliara, S. et al. Patterning of light-emitting conjugated polymer nanofibres. Nature Nanotech 3, 614–619 (2008). https://doi.org/10.1038/nnano.2008.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing