Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanotube-assisted protein deactivation

Abstract

Conjugating proteins onto carbon nanotubes has numerous applications in biosensing1,2, imaging and cellular delivery3,4,5. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube–peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behaviour of nanotube and nanotube–protein conjugates after NIR irradiation.
Figure 2: Deactivation behaviour of nanotube–protein conjugates.
Figure 3: Functionalizing carbon nanotubes with peptides that recognize anthrax toxin.
Figure 4: Applications of nanotube-assisted protein deactivation.

Similar content being viewed by others

References

  1. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  2. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–92 (2005).

    Article  CAS  Google Scholar 

  3. Bianco, A., Kostarelos, K., Partidos, C. D. & Prato, M. Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571–577 (2005).

  4. Kam, N. W. S., O'Connell, M., Wisdom, J. A. & Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl Acad. Sci. USA 102, 11600–11605 (2005).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2006).

    Article  Google Scholar 

  6. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 11, 13549–13554 (2003).

    Article  Google Scholar 

  7. Zheng, M. & Rostovtsev, V. V. Photoinduced charge transfer mediated by DNA-wrapped carbon nanotubes. J. Am. Chem. Soc. 128, 7702–7703 (2006).

    Article  CAS  Google Scholar 

  8. Bosi, S., Da Ros, T., Spalluto, G. & Prato, M. Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913–923 (2003).

    Article  CAS  Google Scholar 

  9. Yamakoshi, Y. et al. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2−. versus 1O2 . J. Am. Chem. Soc. 125, 12803–12809 (2003).

    Article  CAS  Google Scholar 

  10. Bakalova, R. et al. Quantum dot anti-CD conjugates: Are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett. 4, 1567–1573 (2004).

    Article  CAS  Google Scholar 

  11. Bakalova, R., Ohba, H., Zhelev, Z., Ishikawa, M. & Baba, Y. Quantum dots as photosensitizers? Nature Biotechnol. 22, 1360–1361 (2004).

    Article  CAS  Google Scholar 

  12. Keblinski, P., Cahill, D. G., Bodapati, A., Sullivan, C. R. & Taton, T. A. Limits of localized heating by electromagnetically excited nanoparticles. J. Appl. Phys. 100, 54305 (2006).

    Article  Google Scholar 

  13. Bulina, M. E. et al. A genetically encoded photosensitizer. Nature Biotechnol. 24, 95–99 (2006).

    Article  CAS  Google Scholar 

  14. Davies, K. J. A. Protein damage and degradation by oxygen radicals. J. Biol. Chem. 262, 9895–9901 (1987).

    CAS  Google Scholar 

  15. Izumi, I., Fan, F.-R. F. & Bard, A. J. Heterogeneous photocatalytic decomposition of benzoic acid and adipic acid on platinized TiO2 powder. The photo-Kolbe decarboxylative route to the breakdown of the benzene ring and to the production of butane. J. Phys. Chem. 85, 218–223 (1981).

    Article  CAS  Google Scholar 

  16. Dukovic, G. et al. Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes. J. Am. Chem. Soc. 126, 15269–15276 (2004).

    Article  CAS  Google Scholar 

  17. Strano, M. S. et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  CAS  Google Scholar 

  18. Koppenol, W. H. & Butler, J. Energetics of interconversion of oxyradicals. Adv. Free Radic. Biol. Medic. 1, 81–131 (1985).

    Google Scholar 

  19. Okazaki, K., Nakato, Y. & Murakoshi, K. Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Phys. Rev. B 68, 035434 (2003).

    Article  Google Scholar 

  20. Zheng, M. & Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490–15496 (2004).

    Article  CAS  Google Scholar 

  21. Bottini, M. et al. Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7, 2259–2263 (2006).

    Article  CAS  Google Scholar 

  22. Gu, L. et al. Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem. Commun. 874–876 (2005).

  23. Rai, P. et al. Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins. Nature Biotechnol. 24, 582–586 (2006).

    Article  CAS  Google Scholar 

  24. Wu, Z. et al. Transparent, conductive carbon nanotube films. Science 305, 1273–1276 (2004).

    Article  CAS  Google Scholar 

  25. Parkin, I. P. & Palgrave, R. G. Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695 (2005).

    Article  CAS  Google Scholar 

  26. Karajanagi, S. S., Vertegel, A. A., Kane, R. S. & Dordick, J. S. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20, 11594–11599 (2004).

    Article  CAS  Google Scholar 

  27. Asuri, P. et al. Water-soluble carbon nanotube–enzyme conjugates as functional biocatalytic formulations. Biotech. Bioeng. 95, 804–811 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health (U01 AI056546) and the National Science Foundation (DMR 0642573, CBET 0348613). We also thank R. Planty for assistance with the X-ray photoelectron spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

A.J. and S.P. designed and performed the experiments, analysed the data, and co-wrote the manuscript. S.S.B. and H.Y. carried out TEM imaging. T.B.-T. designed the experiments. R.S.K. conceived and designed the experiments, analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ravi S. Kane.

Supplementary information

Supplementary Information

Supplementary figures S1–S7 (PDF 419 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, A., Punyani, S., Bale, S. et al. Nanotube-assisted protein deactivation. Nature Nanotech 3, 41–45 (2008). https://doi.org/10.1038/nnano.2007.386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing