Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An atomic force microscope tip designed to measure time-varying nanomechanical forces

Abstract

Tapping-mode atomic force microscopy (AFM), in which the vibrating tip periodically approaches, interacts and retracts from the sample surface, is the most common AFM imaging method. The tip experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample, yet conventional AFM tips are limited in their ability to resolve these time-varying forces. We have created a specially designed cantilever tip that allows these interaction forces to be measured with good (sub-microsecond) temporal resolution and material properties to be determined and mapped in detail with nanoscale spatial resolution. Mechanical measurements based on these force waveforms are provided at a rate of 4 kHz. The forces and contact areas encountered in these measurements are orders of magnitude smaller than conventional indentation and AFM-based indentation techniques that typically provide data rates around 1 Hz. We use this tool to quantify and map nanomechanical changes in a binary polymer blend in the vicinity of its glass transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the tapping-mode atomic force microscope and the experimental set up.
Figure 2: Design of the torsional harmonic cantilever with an off-axis tip.
Figure 3: Frequency response and vibration spectra of a torsional harmonic cantilever.
Figure 4: Reconstructing the tip–sample force waveform.
Figure 5: Changes in the mechanical properties of a polymer blend near the glass transition.
Figure 6: Indentation forces as a function of temperature in a polymer blend.

Similar content being viewed by others

References

  1. Yamanaka, K., Ogiso, H. & Kolosov, O. Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 64, 178–180 (1994).

    Article  CAS  Google Scholar 

  2. Maivald, P. et al. Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology 2, 103 (1991).

    Article  Google Scholar 

  3. Ge, S. et al. Shear modulation force microscopy study of near surface glass transition temperatures. Phys. Rev. Lett. 85, 2340–2343 (2000).

    Article  CAS  Google Scholar 

  4. Dinelli, F., Buenviaje, C. & Overney, R. M. Glass transition measurements on heterogeneous surfaces. Thin Solid Films 396, 138–144 (2001).

    Article  CAS  Google Scholar 

  5. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  6. Vanlandingham, M. R. et al. Nanoscale indentation of polymer systems using the atomic force microscope. J. Adhesion 64, 31–59 (1997).

    Article  CAS  Google Scholar 

  7. Zhong, Q., Inniss, D., Kjoller, K. & Elings, V. B. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf. Sci. 280, L688–L692 (1993).

    Google Scholar 

  8. Klinov, D. & Magonov, S. True molecular resolution in tapping-mode atomic force microscopy with high-resolution probes. Appl. Phys. Lett. 84, 2697–2699 (2004).

    Article  CAS  Google Scholar 

  9. Cleveland, J. P., Anczykowski, B., Schmid, A. E. & Elings V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613–2615 (1998).

    Article  CAS  Google Scholar 

  10. Paulo, A. S. & Garcia, R. Unifying theory of tapping-mode atomic force microscope Phys. Rev B. 66, 041406 (2002).

  11. Hillenbrand, R., Stark, M. & Guckenberger, R. Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip–sample interaction. Appl. Phys. Lett. 76, 3478–3480 (2000).

    Article  CAS  Google Scholar 

  12. Stark, R. W. & Heckl, W. M. Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation. Surf. Sci. 457, 219–228 (2000).

    Article  CAS  Google Scholar 

  13. Crittenden, S., Raman, A. & Reifenberger, R. Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy. Phys. Rev. B 72, 235422 (2005).

    Article  CAS  Google Scholar 

  14. Legleiter, J., Park, M., Cusick, B. & Kowalewski, T. Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. Proc. Natl Acad. Sci. USA 103, 4813–4818 (2006).

    Article  CAS  Google Scholar 

  15. Hembacher, S., Giessibl, F. J. & Mannhart, J. Force microscopy with light-atom probes. Science 305, 380–383 (2004).

    Article  CAS  Google Scholar 

  16. Stark, M., Stark, R. W., Heckl, W. M. & Guckenberger, R. Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc. Natl Acad. Sci. USA 99, 8473–8478 (2002).

    Article  CAS  Google Scholar 

  17. Rodriguez, T. R. & Garcia, R. Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: comparison between continuous and point-mass models. Appl. Phys. Lett. 80, 1646–1648 (2002).

    Article  CAS  Google Scholar 

  18. Stark, R. W. Optical lever detection in higher eigenmode dynamic atomic force microscopy. Rev. Sci. Instrum. 75, 5053–5055 (2004).

    Article  CAS  Google Scholar 

  19. Stark, R. W., Schitter, G., Stark, M., Guckenberger, R. & Stemmer, A. State-space model of freely vibrating and surface-coupled cantilever dynamics in atomic force microscopy. Phys. Rev. B 69, 085412 (2004).

    Article  CAS  Google Scholar 

  20. Zitzler, L., Herminghaus, S. & Mugele, F. Capillary forces in tapping-mode atomic force microscopy Phys. Rev. B 66, 155436 (2002).

  21. Isrelachvili, J. Intermolecular and Surface Forces (Academic Press, London, 2003).

    Google Scholar 

  22. Luan, B. Q. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    Article  CAS  Google Scholar 

  23. Stark, R. W. & Heckl, W. M. Higher harmonics imaging in tapping-mode atomic-force microscopy. Rev. Sci. Instrum. 74, 5111–5114 (2003).

    Article  CAS  Google Scholar 

  24. Sahin, O. et al. High-resolution imaging of elastic properties using harmonic cantilevers. Sensor. Actuat. A 114, 183–190 (2004).

    Article  CAS  Google Scholar 

  25. Sahin, O., Atalar, A., Quate, C. F. & Solgaard, O. Resonant harmonic response in tapping-mode atomic force microscopy. Phys. Rev. B. 69, 165416 (2004).

    Article  CAS  Google Scholar 

  26. Garcia, R. et al. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys. Rev. Lett. 97, 016103 (2006).

    Article  CAS  Google Scholar 

  27. Ward, I. M. & Sweeney, J. An Introduction to the Mechanical Properties of Solid Polymers (Wiley, Chichester, 2004).

    Google Scholar 

  28. Dinelli, F., Buenviaje, C. & Overney, R. M. Glass transitions of thin polymeric films: speed and load dependence in lateral force microscopy. J. Chem. Phys. 113, 2043–2048 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Yerina of Veeco Instruments for preparing the polymer samples. The authors acknowledge support from the Center for Probing the Nanoscale (CPN), and NSF NSEC, NSF Grant No. PHY-0425897. O. Sahin acknowledges support from the Rowland Junior Fellows Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Sahin.

Ethics declarations

Competing interests

A patent application has been filed by Stanford University.

Supplementary information

Supplementary Information

Supplementary figures S1–S3 (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, O., Magonov, S., Su, C. et al. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nature Nanotech 2, 507–514 (2007). https://doi.org/10.1038/nnano.2007.226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing