Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced fluorescence emission from quantum dots on a photonic crystal surface

Abstract

Colloidal quantum dots display a wide range of novel optical properties that could prove useful for many applications in photonics. Here, we report the enhancement of fluorescence emission from colloidal quantum dots on the surface of two-dimensional photonic crystal slabs. The enhancement is due to a combination of high-intensity near fields and strong coherent scattering effects, which we attribute to leaky eigenmodes of the photonic crystal. By fabricating two-dimensional photonic crystal slabs that operate at visible wavelengths and engineering their leaky modes so that they overlap with the absorption and emission wavelengths of the quantum dots, we demonstrate that the fluorescence intensity can be enhanced by a factor of up to 108 compared with quantum dots on an unpatterned surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visible-wavelength two-dimensional PC slab design and fabrication.
Figure 2: Leaky mode dispersion and efficiency.
Figure 3: Near-field intensity calculations.
Figure 4: Leaky mode dispersion showing the possibility of enhanced extraction for all polarizations and directions of light.
Figure 5: Enhanced fluorescence emission from QDs on the PC surface.

Similar content being viewed by others

References

  1. Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989).

    Article  CAS  Google Scholar 

  2. Wilson, W. L., Szajowski, P. F. & Brus, L. E. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    Article  CAS  Google Scholar 

  3. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  4. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).

    Article  CAS  Google Scholar 

  5. Coe, S., Woo, W.-K., Bawendi, M. & Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  6. Bowers, M. J., McBride, J. R. & Rosenthal, S. J. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127, 15378–15379 (2005).

    Article  CAS  Google Scholar 

  7. Aroutiounian, V., Petrosyan, S., Khachatryan, A. & Touryan, K. Quantum dot solar cells. J. Appl. Phys. 89, 2268–2271 (2001).

    Article  CAS  Google Scholar 

  8. Nakamura, H. et al. Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express 12, 6606–6614 (2004).

    Article  Google Scholar 

  9. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  10. Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  11. Wood, R. W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 392–402 (1902).

    Google Scholar 

  12. Rayleigh, L. On the dynamical theory of gratings. Proc. R. Soc. Lond. Ser. A 79, 399–416 (1907).

    Article  Google Scholar 

  13. Hessel, A. & Oliner, A. A. A new theory of Wood's anomalies on optical gratings. Appl. Opt. 4, 1275–1297 (1965).

    Article  Google Scholar 

  14. Popov, E., Mashev, L. & Maystre, D. Theoretical study of the anomalies of coated dielectric gratings. Opt. Acta 33, 607619 (1986).

    Google Scholar 

  15. Bertoni, H. L., Cheo, L. H. S. & Tamir, T. Frequency selective reflection and transmission by a periodic dielectric layer. IEEE Trans. Antennas Propag. 37, 78–83 (1989).

    Article  Google Scholar 

  16. Wang, S. S., Magnusson, R. & Bagby, J. S. Guided-mode resonances in planar dielectric-layer diffraction gratings. J. Opt. Soc. Am. A 7, 1470–1474 (1990).

    Article  Google Scholar 

  17. Magnusson, R. & Wang, S. S. New principle for optical filters. Appl. Phys. Lett. 61, 1022–1024 (1992).

    Article  CAS  Google Scholar 

  18. Wang, S. S. & Magnusson, R. Theory and applications of guided-mode resonance filters. Appl. Opt. 32, 2606–2613 (1993).

    Article  CAS  Google Scholar 

  19. Peng, S. & Morris, G. M. Resonant scattering from two-dimensional gratings. J. Opt. Soc. Am. A 13, 993–1005 (1996).

    Article  Google Scholar 

  20. Peng, S. & Morris, G. M. Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings. Opt. Lett. 21, 549–551 (1996).

    Article  CAS  Google Scholar 

  21. Boonruang, S., Greenwell, A. & Moharam, M. G. Multiline two-dimensional guided-mode resonant filters. Appl. Opt. 45, 5740–5747 (2006).

    Article  Google Scholar 

  22. Suh, W. & Fan, S. All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett. 84, 4905–4907 (2004).

    Article  CAS  Google Scholar 

  23. Rosenberg, A. et al. Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum. Opt. Express 13, 6564–6571 (2005).

    Article  CAS  Google Scholar 

  24. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).

    Article  CAS  Google Scholar 

  25. Astratov, V. N. et al. Resonant coupling of near-infrared radiation to photonic band structure waveguides. J. Lightwave Technol. 17, 2050–2057 (1999).

    Article  Google Scholar 

  26. Boroditsky, M. et al. Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals. Appl. Phys. Lett. 75, 1036–1038 (1999).

    Article  CAS  Google Scholar 

  27. Boroditsky, M. et al. Spontaneous emission extraction and purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol. 17, 2096–2112 (1999).

    Article  CAS  Google Scholar 

  28. Erchak, A. A. et al. Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode. Appl. Phys. Lett. 78, 563–565 (2001).

    Article  CAS  Google Scholar 

  29. Cunningham, B. et al. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions. Sens. Act. B 81, 316–328 (2002).

    Article  CAS  Google Scholar 

  30. Kobayashi, T., Kanamori, Y. & Hane, K. Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure. Appl. Phys. Lett. 87, 151106 (2005).

    Article  CAS  Google Scholar 

  31. Rosenblatt, D., Sharon, A. & Friesem, A. A. Resonant grating waveguide structures. IEEE J. Quant. Electron. 33, 2038–2059 (1997).

    Article  CAS  Google Scholar 

  32. Ganesh, N., Block, I. D. & Cunningham, B. T. Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio. Appl. Phys. Lett. 89, 023901 (2006).

    Article  CAS  Google Scholar 

  33. Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811–818 (1981).

    Article  Google Scholar 

  34. Ding, Y. & Magnusson, R. Use of nondegenerate resonant leaky modes to fashion diverse optical spectra. Opt. Express 12, 1885–1891 (2004).

    Article  CAS  Google Scholar 

  35. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  36. Ichikawa, H. & Baba, T. Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal. Appl. Phys. Lett. 84, 457–459 (2004).

    Article  CAS  Google Scholar 

  37. Tamm, L. Optical Microscopy: Emerging Methods and Applications (Academic Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Illinois College of ACES Experimental Station, SRU Biosystems, the Soybean Disease Biotechnology Center and the National Science Foundation (BES 0427657). Part of this work was carried out in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the US Department of Energy under grant DEFG02-91-ER45439. The authors would like to thank the staff of the Micro and Nanotechnology Laboratory and colleagues from the Nano Sensors Group for their suggestions and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian T. Cunningham.

Ethics declarations

Competing interests

Brian Cunningham is an officer and director of SRU Biosystems.

Supplementary information

Supplementary Information

Supplementary figures S1–S4 (PDF 301 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, N., Zhang, W., Mathias, P. et al. Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nature Nanotech 2, 515–520 (2007). https://doi.org/10.1038/nnano.2007.216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing