Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles

Abstract

The synthesis of carbon nanotubes (CNTs) of desired chiralities and diameters is one of the most important challenges in nanotube science and achieving such selectivity may require a detailed understanding of their growth mechanism. We report the formation of CNTs in an entirely condensed phase process that allows us, for the first time, to monitor the nucleation of a nanotube on the spherical surface of a metal particle. When multiwalled CNTs containing metal particle cores are irradiated with an electron beam, carbon from graphitic shells surrounding the metal particles is ingested into the body of the particle and subsequently emerges as single-walled nanotubes (SWNTs) or multiwalled nanotubes (MWNTs) inside the host nanotubes. These observations, at atomic resolution in an electron microscope, show that there is direct bonding between the tubes and the metal surface from which the tubes sprout and can be readily explained by bulk diffusion of carbon through the body of catalytic particles, with no evidence of surface diffusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SWNT growth from a Co crystal.
Figure 2: SWNT growth from Fe with possible occurrence of a carbide phase.
Figure 3: MWNT growth from a FeCo crystal.
Figure 4: Interface between a FeCo crystal and a nanotube.
Figure 5: Mechanism of nanotube growth.

Similar content being viewed by others

References

  1. Dai, H. Nanotube growth and characterization in Carbon Nanotubes: Synthesis, Structure and Applications (eds Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. ) 29–53 (Springer, Berlin/Heidelberg, 2001).

  2. Helveg, S. et al. Atomic-scale imaging of carbon nanofiber growth. Nature 427, 426–429 (2004).

    Article  CAS  Google Scholar 

  3. Lin, M. et al. Direct observation of single-walled carbon nanotube growth at the atomic scale. Nano Lett. 6, 449–452 (2006).

    Article  CAS  Google Scholar 

  4. Sharma, R. & Iqbal, Z. In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 84, 990–992 (2004).

    Article  CAS  Google Scholar 

  5. Baker, R. T. K., Harris, P. S., Thomas, R. B. & Waite, R. J. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86–95 (1973).

    Article  CAS  Google Scholar 

  6. Raty, J. Y., Gygi, F. & Galli, G. Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab-initio molecular dynamics simulations. Phys. Rev. Lett. 95, 096103 (2005).

    Article  Google Scholar 

  7. Gavillet, J. et al. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 87, 275504 (2001).

    Article  CAS  Google Scholar 

  8. Hofmann, S., Csanyi, G., Ferrari, A. C., Payne, M. C. & Robertson, J. Surface diffusion: the low activation energy path for nanotube growth. Phys. Rev. Lett. 95, 036101 (2005).

    Article  CAS  Google Scholar 

  9. Schaper, A. K., Hou, H. Q., Greiner, A. & Phillipp, F. The role of iron carbide in multiwalled carbon nanotube growth. J. Catal. 222, 250–254 (2004).

    Article  CAS  Google Scholar 

  10. Banhart, F., Li, J. X. & Krasheninnikov, A. V. Carbon nanotubes under electron irradiation: stability of the tubes and their action as pipes for atom transport. Phys. Rev. B 71, 241408 (2005).

    Article  Google Scholar 

  11. Sun, L. et al. Carbon nanotubes as high pressure cylinders and nanoextruders. Science 312, 1199–1202 (2006).

    Article  CAS  Google Scholar 

  12. Kamalakaran, R. et al. Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77, 3385–3387 (2000).

    Article  CAS  Google Scholar 

  13. Mayne, M. et al. Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem. Phys. Lett. 338, 101–107 (2001).

    Article  CAS  Google Scholar 

  14. Elías, A. L. et al. Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes. Nano Lett. 5, 467–472 (2005).

    Article  Google Scholar 

  15. Banhart, F., Redlich, Ph. & Ajayan, P. M. The migration of metal atoms through carbon onions. Chem. Phys. Lett. 292, 554–560 (1998).

    Article  CAS  Google Scholar 

  16. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999).

    Article  CAS  Google Scholar 

  17. McLellan, R. B., Ko, C. & Wasz, M. L. The diffusion of carbon in solid cobalt. J. Phys. Chem. Solids 53, 1269–1273 (1992).

    Article  CAS  Google Scholar 

  18. Abild-Pedersen, F., Nørskov, J. K., Rostrup-Nielsen, J. R., Sehested, J. & Helveg, S. Mechanisms for catalytic carbon nanofiber growth studied by ab-initio density functional theory calculations. Phys. Rev. B 73, 115419 (2006).

    Article  Google Scholar 

  19. Xu, C. H., Fu, C. L. & Pedraza, D. F. Simulations of point defect properties in graphite by a tight-binding force model. Phys. Rev. B 48, 13273–13279 (1993).

    Article  CAS  Google Scholar 

  20. Sun, L. & Banhart, F. Graphitic onions as reaction cells on the nanoscale. Appl. Phys. Lett. 88, 193121 (2006).

    Article  Google Scholar 

  21. Amara, H., Bichara, C. & Ducastelle, F. Formation of carbon nanostructures on nickel surfaces: a tight-binding grand canonical Monte Carlo study. Phys. Rev. B 73, 113404 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

Support from the Deutsche Forschungsgemeinschaft (BA 1884/4-1) and the International Max Planck Research School in Mainz (J.A.R.-M.) is gratefully acknowledged. We also thank CONACYT-Mexico for scholarship (J.A.R.-M.) and grants 45772 (M.T.), 45762 (H.T.), 42428-Inter American Collaboration (H.T.), 41464-Inter American Collaboration (M.T.), 2004-01-013-SALUD-CONACYT (M.T.) and PUE-2004-CO2-9 Fondo Mixto de Puebla (M.T.). We thank A. Elías and A. Zamudio for assistance in the preparation of the FeCo sample and A. Krasheninnikov for fruitful discussions. H.W.K. thanks The Florida State University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Banhart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary text, movie legends and supplementary figure 1 (PDF 1405 kb)

Supplementary Information

Supplementary movie 1 (AVI 1116 kb)

Supplementary Information

Supplementary movie 2 (AVI 2443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Manzo, J., Terrones, M., Terrones, H. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nature Nanotech 2, 307–311 (2007). https://doi.org/10.1038/nnano.2007.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing