Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear magnetic resonance imaging with 90-nm resolution

Abstract

Magnetic resonance imaging (MRI) is a powerful imaging technique that typically operates on the scale of millimetres to micrometres. Conventional MRI is based on the manipulation of nuclear spins with radio-frequency fields, and the subsequent detection of spins with induction-based techniques. An alternative approach, magnetic resonance force microscopy (MRFM), uses force detection to overcome the sensitivity limitations of conventional MRI. Here, we show that the two-dimensional imaging of nuclear spins can be extended to a spatial resolution better than 100 nm using MRFM. The imaging of 19F nuclei in a patterned CaF2 test object was enabled by a detection sensitivity of roughly 1,200 nuclear spins at a temperature of 600 mK. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4 × 106 T m−1, and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume was less than 650 zeptolitres. This is 60,000 times smaller than the previous smallest volume for nuclear magnetic resonance microscopy, and demonstrates the feasibility of pushing MRI into the nanoscale regime.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic setup and components of the MRFM experiment.
Figure 2: Characterization of the tip magnetic field.
Figure 3: Timing diagram for the cyclic-CERMIT technique.
Figure 4: Sample preparation method for patterned CaF2 test sample.
Figure 5: Experimental results and simulation showing two-dimensional imaging of 19F nuclei.

Similar content being viewed by others

References

  1. Ciobanu, L., Seeber, D. A. & Pennington, C. H. 3D MR microscopy with resolution 3.7 µm by 3.3 µm by 3.3 µm. J. Magn. Reson. 158, 178–182 (2002).

    Article  CAS  Google Scholar 

  2. Lee, S.-C. et al. One micrometer resolution NMR microscopy. J. Magn. Reson. 150, 207–213 (2001).

    Article  CAS  Google Scholar 

  3. Glover, P. & Mansfield, P. Limits to magnetic resonance microscopy. Rep. Prog. Phys. 65, 1489–1511 (2002).

    Article  Google Scholar 

  4. Hoult, D. I. & Richards, R. E. The signal to noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. 24, 71–85 (1976).

    Google Scholar 

  5. Ciobanu, L., Webb, A. G. & Pennington, C. H. Magnetic resonance imaging of biological cells. Prog. Nucl. Magn. Reson. Spec. 42, 69–93 (2003).

    Article  CAS  Google Scholar 

  6. Sidles, J. A. Folded Stern–Gerlach experiment as a means for detecting nuclear magnetic resonance in individual nuclei. Phys. Rev. Lett. 68, 1124–1127 (1992).

    Article  CAS  Google Scholar 

  7. Sidles, J. A. & Rugar, D. Signal-to-noise ratios in inductive and mechanical detection of magnetic resonance. Phys. Rev. Lett. 70, 3506–3509 (1993).

    Article  CAS  Google Scholar 

  8. Rugar, D., Yannoni, C. S. & Sidles, J. A. Mechanical detection of magnetic resonance. Nature 360, 563–566 (1992).

    Article  Google Scholar 

  9. Rugar, D. et al. Force detection of nuclear magnetic resonance. Science 264, 1560–1563 (1994).

    Article  CAS  Google Scholar 

  10. Zhang, Z., Hammel, P. C. & Wigen, P. E. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy. Appl. Phys. Lett. 68, 2005–2007 (1996).

    Article  CAS  Google Scholar 

  11. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  12. Madsen, L. A., Leskowitz, G. M. & Weitekamp, D. P. Observation of force-detected nuclear magnetic resonance in a homogeneous field. Proc. Natl Acad. Sci. USA 101, 12804–12808 (2004).

    Article  CAS  Google Scholar 

  13. Degen, C. L. et al. Microscale localized spectroscopy with a magnetic resonance force microscope. Phys. Rev. Lett. 94, 207601 (2005).

    Article  CAS  Google Scholar 

  14. Zuger, O., Hoen, S. T., Yannoni, C. S. & Rugar, D. Three-dimensional imaging with a nuclear magnetic resonance force microscope. J. Appl. Phys. 79, 1881–1884 (1996).

    Article  CAS  Google Scholar 

  15. Bruland, K. J., Dougherty, W. M., Garbini, J. L., Sidles, J. A. & Chao, S. H. Force-detected magnetic resonance in a field gradient of 250000 Tesla per meter. Appl. Phys. Lett. 73, 3159–3161 (1998).

    Article  CAS  Google Scholar 

  16. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett. 86, 2874–2877 (2001).

    Article  CAS  Google Scholar 

  17. Ng, T. N., Jenkins, N. E. & Marohn, J. A. Thermomagnetic fluctuations and hysteresis loops of magnetic cantilevers for magnetic resonance force microscopy. IEEE Trans. Magn. 42, 378–381 (2006).

    Article  CAS  Google Scholar 

  18. Giorgio, M., Meier, B., Magin, R. & Meyer, E. Magnetic damping losses of tipped cantilevers. Nanotechnology 17, 871–880 (2006).

    Article  CAS  Google Scholar 

  19. NT-MDT. NT-MDT, catalog no. TGT1 (www.NT-MDT.ru).

  20. Hammel, P. C. et al. The magnetic-resonance force microscope: A new tool for high-resolution, 3-D, subsurface scanned probe imaging. Proc. IEEE 91, 789–798 (2003).

    Article  Google Scholar 

  21. Chui, B. W. et al. Technical Digest of the 12th International Conference on Solid-State Sensors and Actuators (Transducers'03) (IEEE, Piscataway, NJ, 2003).

    Google Scholar 

  22. Sleator, T., Hahn, E. L., Hilbert, C. & Clarke, J. Nuclear-spin noise. Phys. Rev. Lett. 55, 1742–1745 (1985).

    Article  CAS  Google Scholar 

  23. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Detection and manipulation of statistical polarization in small spin ensembles. Phys. Rev. Lett. 91, 207604 (2003).

    Article  CAS  Google Scholar 

  24. Mamin, H. J., Budakian, R., Chui, B. W. & Rugar, D. Magnetic resonance force microscopy of nuclear spins: Detection and manipulation of statistical polarization. Phys. Rev. B 72, 024413–1 (2005).

    Article  Google Scholar 

  25. Muller, N. & Jerschow, A. Nuclear spin noise imaging. Proc. Natl Acad. Sci. USA 103, 6790–6792 (2006).

    Article  Google Scholar 

  26. Slichter, C. P. Principles of Magnetic Resonance (Springer, Heidelberg, 1996).

    Google Scholar 

  27. Garner, S. R., Kuehn, S., Dawlaty, J. M., Jenkins, N. E. & Marohn, J. A. Force-gradient detected nuclear magnetic resonance. Appl. Phys. Lett. 84, 5091–5093 (2004).

    Article  CAS  Google Scholar 

  28. Chao, S.-H., Dougherty, W. M., Garbini, J. L. & Sidles, J. A. Nanometer-scale magnetic resonance imaging. Rev. Sci. Instr. 75, 1175–1181 (2004).

    Article  CAS  Google Scholar 

  29. Tsuji, S., Masumizu, T. & Yoshinari, Y. Magnetic resonance imaging of isolated single liposome by magnetic resonance force microscopy. J. Magn. Reson. 167, 211–220 (2004).

    Article  CAS  Google Scholar 

  30. Ting, M., Hero, A. O., Rugar, D., Yip, C. Y. & Fessler, J. A. Near-optimal signal detection for finite-state Markov signals with application to magnetic resonance force microscopy. IEEE Trans. Sign. Processing 54, 2049–2062 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Marohn for discussions on the CERMIT technique, B. Hughes for assistance with magnetic tip preparation, B. W. Chui for cantilever fabrication, and D. Pearson and B. Melior for technical support. We acknowledge support from the DARPA QUIST program administered through the US Army Research Office, the Swiss National Science Foundation, and the Stanford-IBM Center for Probing the Nanoscale, a NSF Nanoscale Science and Engineering Center.

Author information

Authors and Affiliations

Authors

Contributions

H.J.M., D. R. and M.P. conceived, designed and performed the experiment. M.P. and D.R. implemented the RF sweep method. D.R., M.P. and H.J.M. performed tip-field modelling. C.L.D. modelled the cyclic-CERMIT protocol and performed the image simulation. H.J.M. and D.R. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to H. J. Mamin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamin, H., Poggio, M., Degen, C. et al. Nuclear magnetic resonance imaging with 90-nm resolution. Nature Nanotech 2, 301–306 (2007). https://doi.org/10.1038/nnano.2007.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing