Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemical modification of the electronic conducting states in polymer nanodevices

Abstract

Organic materials offer new electronic functionality not available in inorganic devices. However, the integration of organic compounds within nanoscale electronic circuitry poses new challenges for materials physics and chemistry. Typically, the electronic states in organic materials are energetically misaligned with the Fermi level of metal contacts. Here, we study the voltage-induced change in conductivity in nanoscale devices comprising a monolayer of polyelectrolyte macromolecules. The devices are fabricated using integrated shadow masks. Reversible switching is observed between conducting (ON) and non-conducting (OFF) states in the devices. The open design of our devices easily permits chemical modification of the polyelectrolyte, which we show has a pronounced effect on the ON–OFF switching. We suggest that the switching voltage ionizes the polymers, creating a conducting channel of electronic levels aligned with the contact Fermi level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device fabrication.
Figure 2: Memory effect in polymer brush devices.
Figure 3: Distinct transport properties are observed in the high-conductance ‘ON’ state.
Figure 4: Effect of chemical modifications on the switching voltage.
Figure 5: Examples of irreversible brush modifications.

Similar content being viewed by others

References

  1. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  2. Stewart, D. R. et al. Molecule-independent electrical switching in Pt/organic monolayer/Ti devices. Nano Lett. 4, 133–136 (2004).

    Article  CAS  Google Scholar 

  3. Ma, L. P., Liu, J. & Yang, Y. Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett. 80, 2297–2299 (2002).

    Google Scholar 

  4. Ouyang, J. Y., Chu, C. W., Szmanda, C. R., Ma, L. P. & Yang, Y. Programmable polymer thin film and non-volatile memory device. Nature Mater. 3, 918 (2004).

    Article  CAS  Google Scholar 

  5. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550–1552 (1999).

    Article  CAS  Google Scholar 

  6. Tseng, R. J., Ouyang, J., Chu, C. W., Huang, J. S. & Yang, Y. Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device. Appl. Phys. Lett. 88, 123506 (2006).

    Article  Google Scholar 

  7. Brewer, J. E., Zhirnov, V. V. & Hutchby, J. A. Memory technology for the post CMOS era. IEEE Circuits Device. 21, 13 (2005).

    Article  Google Scholar 

  8. Kozicki, M. N., Gopalan, C., Balakrishnan, M. & Mitkova, M. A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte. IEEE Trans. Nanotechnol. 5, 535–544 (2006).

    Article  Google Scholar 

  9. Tondelier, D., Lmimouni, K., Vuillaume, D., Fery, C. & Haas, G. Metal/organic/metal bistable memory devices. Appl. Phys. Lett. 85, 5763 (2004).

    Article  CAS  Google Scholar 

  10. Zhitenev, N. B. et al. Control of topography, stress and diffusion at molecule-metal interfaces. Nanotechnology 17, 1272 (2006).

    Article  CAS  Google Scholar 

  11. Philipp, G., MuЁller-Schwanneke, C., Burghard, M., Roth, S. & Klitzing, K.v. Gold cluster formation at the interface of a gold/Langmuir–Blodgett film/gold microsandwich resulting in Coulomb charging phenomena. J. Appl. Phys. 85, 3374–3376 (1999).

    Article  CAS  Google Scholar 

  12. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 425, 158–162 (2003).

    Article  CAS  Google Scholar 

  13. Ma, W. L., Yang, C. Y., Gong, X., Lee, K. & Heeger, A. J. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005).

    Article  CAS  Google Scholar 

  14. Harland, R. S. & Prud'homme, R. K. (eds) Polyelectrolyte Gels. Properties, Preparation and Application Vol. 480 (American Chemical Society, Washington DC, 1992).

    Book  Google Scholar 

  15. Roiter, Y. & Minko, S. AFM single molecule experiments at the solid–liquid interface: in situ conformation of adsorbed flexible polyelectrolyte chains. J. Am. Chem. Soc 127, 15688–15689 (2005).

    Article  CAS  Google Scholar 

  16. Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888 (2005).

    Article  CAS  Google Scholar 

  17. Ruhe, J. in Polymer Brushes (eds Advincula, R. C., Brittain, W. J., Caster, K. C., & Ruhe, R.) (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  18. Bialk, M., Prucker, O. & Ruhe, J. Grafting of polymers to solid surfaces by using immobilized methacrylates. Colloids and Surfaces A 198–200, 543–549 (2002).

    Article  Google Scholar 

  19. Iyer, K. S., Zdyrko, B., Malz, H., Pionteck, J. & Luzinov, I. Polystyrene layers grafted to macromolecular anchoring layer. Macromolecules 36, 6519–6526 (2003).

    Article  CAS  Google Scholar 

  20. Lai, Y. S., Tu, C. H., Kwong, D. L. & Chen, J. S. Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications. Appl. Phys. Lett. 87, 122101 (2005).

    Article  Google Scholar 

  21. Grabert, H. & Devoret, M. H. Single Charge Tunneling (Plenum Press, New York, 1992).

    Book  Google Scholar 

  22. Zdyrko, B., Klep, V. & Luzinov, I. Synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers. Langmiur 19, 10179–10187 (2003).

    Article  CAS  Google Scholar 

  23. Brandrup, J. & Immergut, E. H. Polymer Handbook 3rd edn (Wiley-Interscience, New York, 1988).

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge discussions with E. Chandross, J. Aizenberg, A. White and V. Zhirnov. A.S. was supported by the Office of Naval Research, Award N00014-05-1-0909.

Author information

Authors and Affiliations

Authors

Contributions

N.Z. and A.S. conceived and performed the experiments, D.T. and R.C. designed and fabricated the integrated masks.

Corresponding author

Correspondence to N. B. Zhitenev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S6 (PDF 788 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhitenev, N., Sidorenko, A., Tennant, D. et al. Chemical modification of the electronic conducting states in polymer nanodevices. Nature Nanotech 2, 237–242 (2007). https://doi.org/10.1038/nnano.2007.75

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing