Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of extremely long spin relaxation times in an organic nanowire spin valve

Abstract

Organic semiconductors that are π-conjugated are emerging as an important platform for ‘spintronics’, which purports to harness the spin degree of freedom of a charge carrier to store, process and/or communicate information1. Here, we report the study of an organic nanowire spin valve device, 50 nm in diameter, consisting of a trilayer of ferromagnetic cobalt, an organic, Alq3, and ferromagnetic nickel. The measured spin relaxation time in the organic is found to be exceptionally long—between a few milliseconds and a second—and it is relatively temperature independent up to 100 K. Our experimental observations strongly suggest that the primary spin relaxation mechanism in the organic is the Elliott–Yafet mode, in which the spin relaxes whenever a carrier scatters and its velocity changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of a nanowire spin valve structure.
Figure 2: Magnetoresistance traces at different temperatures.
Figure 3: TEM images of typical nanowire spin valve structures.
Figure 4: Temperature dependence of the spin relaxation length and time.

Similar content being viewed by others

References

  1. Xiong, Z. H., Wu D., Vardeny Z. V. & Shi, J . Giant magnetoresistance in organic spin valves. Nature 427, 821–824 (2004).

    Article  Google Scholar 

  2. Dediu, V., Murgia, M., Matacotta, F. C., Taliani C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    Article  Google Scholar 

  3. Forrest, S., Burrows, P. & Thompson, M. The dawn of organic electronics. IEEE Spectr. 37, 29–34 (Aug 2000).

    Article  Google Scholar 

  4. Petta, J. R., Slater, S. K. & Ralph, D. C. Spin dependent transport in molecular tunnel junctions. Phys. Rev. Lett. 93, 136601 (2004).

    Article  CAS  Google Scholar 

  5. Ruden, R. P. & Smith, D. L. Theory of spin injection into conjugated organic semiconductors. J. Appl. Phys. 95, 4898–4904 (2004).

    Article  Google Scholar 

  6. Yu, Z. G., Berding, M. A. & Krishnamurthy, S. Spin drift, spin precession and magnetoresistance of non-collinear magnet–polymer–magnet structures. Phys. Rev. B 71, 060408(R) (2005).

  7. Rocha, A. R., Garcia-Suarez, V. M., Bailey, S. W., Lambert, C. J., Ferrer, J. & Sanvito, S. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  Google Scholar 

  8. Pati, R., Senapati L., Ajayan, P. M. & Nayak, S. K. First principles calculations of spin polarized electron transport in a molecular wire: Molecular spin valve. Phys. Rev. B 68, 100407(R) (2003).

  9. Zheng, M. et al. Magnetic properties of Ni nanowires in self assembled arrays. Phys. Rev. B 62, 12282–12286 (2000).

    Article  CAS  Google Scholar 

  10. Francis, T. L., Mermer, O., Veeraraghavan, G. & Wohlgenannt, M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 6, 185 (2004).

    Article  Google Scholar 

  11. Mermer, Ö., Veeraraghavan, G., Francis, T. L. & Wohlgenannt, M. Large magnetoresistance at room temperature in small molecular weight organic semiconductor sandwich devices. Solid State Commun. 134, 631–636 (2005).

    Article  Google Scholar 

  12. Pramanik, S., Bandyopadhyay, S., Garre, K. & Cahay, M. Normal and inverse spin valve effect in organic semiconductor nanowires and the background magnetoresistance. Phys. Rev. B 74, 235329 (2006).

    Article  Google Scholar 

  13. Zeng, H. et al. Magnetic properties of self assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718–4720 (2000).

    Article  Google Scholar 

  14. McGuire T. I. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  Google Scholar 

  15. Ohgai, T. et al. Template synthesis and magnetoresistance property of Ni and Co single nanowires electrodeposited into nanopores with a wide range of aspect ratios. J. Phys. D 36, 3109–3114 (2003).

    Article  Google Scholar 

  16. Xie, S. J., Ahn, K. H., Smith, D. L., Bishop, A. R. & Saxena, A., Ground state properties of ferromagnetic metal/conjugated polymer interfaces. Phys. Rev. B 67, 125202 (2003).

    Article  Google Scholar 

  17. Saikin, S. A drift-diffusion model for spin-polarized transport in a two-dimensional non-degenerate electron gas controlled by spin orbit interaction. J. Phys. Condens. Matter 16, 5071–5081 (2004).

    Article  Google Scholar 

  18. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article  Google Scholar 

  19. Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin dependent tunneling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).

    Article  Google Scholar 

  20. Zahid, F., Ghosh, A. W., Paulsson, M., Polizzi, E. & Datta, S. Charging induced asymmetry in molecular conductors. Phys. Rev. B 70, 245317 (2004).

    Article  Google Scholar 

  21. D'yakonov, M. I. & Perel', V. I. Orientation of electrons associated with the interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).

    Google Scholar 

  22. Elliott, R. J. Theory of the effect of spin orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96, 266–279 (1954).

    Google Scholar 

  23. Abragam, A. The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  24. Bir, G. L., Aronov, A. G. & Pikus, G. E. Spin relaxation of electrons due to scattering by holes. Sov. Phys. JETP 42, 705–712 (1976).

    Google Scholar 

  25. Sheng, Y. et al. Hyperfine interaction and magnetoresistance in organic semiconductors. Phys. Rev. B 74, 045213 (2006).

    Article  Google Scholar 

  26. Sanvito, S. & Rocha, A. R. Molecular-spintronics: the art of driving spin through molecules. Preprint at http://arxiv.org/cond-mat/0605239 (2006).

  27. Pokalyakin, V. et al. Proposed model for bistability in nanowire nonvolatile memory. J. Appl. Phys. 97, 124306 (2005).

    Article  Google Scholar 

  28. Salis, G., Alvarado, S. F., Tschudy, M., Brunschwiler T. & Allenspach, R. Hysteretic electroluminescence in organic light-emitting diodes for spin injection. Phys. Rev. B. 70, 085203 (2004).

    Article  Google Scholar 

  29. Chen, B. J. et al. Electron drift mobility and electroluminescent efficiency of tris(8-hydroxyquinolinolato) aluminum. Appl. Phys. Lett. 75, 4010–4012 (1999).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the US Air Force Office of Scientific Research under grant FA9550-04-1-0261, by the National Science Foundation under grant ECS-0608854 and by the US Department of Energy under grant DE-AC02-98CH10886 (subcontract from Brookhaven National Laboratory).

Author information

Authors and Affiliations

Authors

Contributions

S.B., S.Pr. and M.C. conceived and designed the experiments, S.Pr., C.G.S. and S.Pa conducted the experiments, S.Pr and K.G. fabricated the structures and S.B. wrote the paper.

Corresponding author

Correspondence to S. Bandyopadhyay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, S., Stefanita, CG., Patibandla, S. et al. Observation of extremely long spin relaxation times in an organic nanowire spin valve. Nature Nanotech 2, 216–219 (2007). https://doi.org/10.1038/nnano.2007.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.64

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing