Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tuning the conductance of a molecular switch

Abstract

The ability to control the conductance of single molecules will have a major impact in nanoscale electronics1,2,3,4,5,6,7,8,9,10,11. Azobenzene, a molecule that changes conformation as a result of a trans/cis transition when exposed to radiation, could form the basis of a light-driven molecular switch12,13,14. It is therefore crucial to clarify the electrical transport characteristics of this molecule. Here, we investigate, theoretically, charge transport in a system in which a single azobenzene molecule is attached to two carbon nanotubes. In clear contrast to gold electrodes, the nanotubes can act as true nanoscale electrodes and we show that the low-energy conduction properties of the junction may be dramatically modified by changing the topology of the contacts between the nanotubes and the molecules, and/or the chirality of the nanotubes (that is, zigzag or armchair). We propose experiments to demonstrate controlled electrical switching with nanotube electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Low-energy electronic states of azobenzene including the NHCO linkers.
Figure 2: Linear conductance at zero bias for a (5,5) armchair–trans(cis)–armchair junction.
Figure 3: Linear conductance at zero bias for a (9,0) zigzag–trans(cis)–zigzag junction.
Figure 4: Average conductance and current-voltage characteristics of the CNT–azobenzene junctions.

Similar content being viewed by others

References

  1. Joachim, C. & Ratner, M. A. Molecular electronics: some views on transport junctions and beyond. Proc. Natl Acad. Sci. USA 102, 8801–8808 (2005).

    Article  CAS  Google Scholar 

  2. Visoly-Fisher, I. et al. Conductance of a biomolecular wire. Proc. Natl Acad. Sci. USA 103, 8686–8690 (2006).

    Article  CAS  Google Scholar 

  3. Champagne, A. R., Pasupathy, A. N. & Ralph, D. C. Mechanically adjustable and electrically gated single-molecule transistors. Nano Lett. 5, 305–308 (2005).

    Article  CAS  Google Scholar 

  4. Donhauser, Z. J. et al. Conductance switching in single molecules through conformational changes. Science 292, 2303–2307 (2001).

    Article  CAS  Google Scholar 

  5. Lastapis, M. et al. Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005).

    Article  CAS  Google Scholar 

  6. Wu, S. W., Nazin, G., Chen, X., Qiu, X. H. & Ho, W. Control of relative tunneling rates in single molecule bipolar electron transport. Phys. Rev. Lett. 93, 236802 (2004).

    Article  CAS  Google Scholar 

  7. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    Article  CAS  Google Scholar 

  8. Zhirnov, V. V. & Cavin, R. K. Molecular electronics: chemistry of molecules or physics of contacts? Nature Mater. 5, 11–12 (2006).

    Article  CAS  Google Scholar 

  9. Choi, B.-Y. et al. Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. Phys. Rev. Lett. 96, 156106 (2006).

    Article  Google Scholar 

  10. Moresco, F. et al. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: a route to molecular switching. Phys. Rev. Lett. 86, 672–675 (2001).

    Article  CAS  Google Scholar 

  11. Dulić, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  Google Scholar 

  12. Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  13. Zhang, C. et al. Coherent electron transport through an azobenzene molecule: a light-driven molecular switch. Phys. Rev. Lett. 92, 158301 (2004).

    Article  CAS  Google Scholar 

  14. Zhang, C. et al. Current-voltage characteristics through a single light-sensitive molecule. Phys. Rev. B 73, 125445 (2006).

    Article  Google Scholar 

  15. Guo, X. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 311, 356–359 (2006).

    Article  CAS  Google Scholar 

  16. Venkataraman L. et al. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 6, 458–462 (2006).

    Article  CAS  Google Scholar 

  17. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005).

    Article  Google Scholar 

  18. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–280 (1974).

    Article  CAS  Google Scholar 

  19. Cumings, J. & Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000).

    Article  CAS  Google Scholar 

  20. Kwon, Y.-K., Berber, S. & Tománek, D. Thermal contraction of carbon fullerenes and nanotubes. Phys. Rev. Lett. 92, 015901 (2004).

    Article  Google Scholar 

  21. Frauenheim, T. et al. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Stat. Sol. B 217, 41–62 (2000).

    Article  CAS  Google Scholar 

  22. Pecchia, A. & Carlo, A. D. Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497–1561 (2004).

    Article  CAS  Google Scholar 

  23. Fisher, D. S. & Lee, P. A. Relation between conductivity and transmission matrix. Phys. Rev. B 23, 6851–6854 (1981).

    Article  CAS  Google Scholar 

  24. Cuniberti, G., Grossmann, F. & Gutíerrez, R. The role of contacts in molecular electronics. Adv. Solid State Phys. 42, 133–149 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Holleitner for making us aware of the details of the experiments being performed with azobenzene, and N. Nemec, D. Tomanek and R. de Vivie-Riedle for discussions and suggestions. This work was funded by the Volkswagen Foundation under grant No. I/78 340, by the DFG Priority Program “Quantum Transport at the Molecular Scale” SPP1243, by the MEC under contracts MAT2005-01388, NAN2004-09109-CO4-04, by the CAM under contract No. S-0505/ESP-0200, and by the European Union project “Carbon nanotube devices at the quantum limit” (CARDEQ) under contract No. IST-021285-2. M.d.V. acknowledges the support from the FPI Program of the Comunidad Autónoma de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianaurelio Cuniberti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 637 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Valle, M., Gutiérrez, R., Tejedor, C. et al. Tuning the conductance of a molecular switch. Nature Nanotech 2, 176–179 (2007). https://doi.org/10.1038/nnano.2007.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing