Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantized magnetoresistance in atomic-size contacts

Abstract

When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport1 and the conductance becomes quantized2,3,4. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization5,6,7 and various unusual magnetoresistive phenomena8,9,10,11,12. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR)13. Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ballistic transport measurements for Co nanocontacts.
Figure 2: Time-dependent quantum conductance.
Figure 3: Angular dependence of ballistic conductance.
Figure 4: Results of a tight-binding model.

Similar content being viewed by others

References

  1. Sharvin, Y. V. A possible method for studying Fermi surfaces. Sov. Phys. JETP 21, 655–656 (1965).

    Google Scholar 

  2. Montie, E. A. et al. Observation of the optical analogue of quantized conductance of a point contact. Nature 350, 594–595 (1991).

    Article  Google Scholar 

  3. Krans, J. M. et al. The signature of conductance quantization in metallic point contacts. Nature 375, 767–769 (1995).

    Article  CAS  Google Scholar 

  4. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–785 (1998).

    Article  CAS  Google Scholar 

  5. Oshima, H. & Miyano, K. Spin-dependent conductance quantization in nickel point contacts. Appl. Phys. Lett. 73, 2203–2205 (1998).

    Article  CAS  Google Scholar 

  6. Ono, T., Ooka, Y. & Miyajima, H. 2e2/h to e2/h switching of quantum conductance associated with a change in nanoscale ferromagnetic domain structure. Appl. Phys. Lett. 75, 1622–1624 (1999).

    Article  CAS  Google Scholar 

  7. Imamura, H., Kobayashi, N., Takahashi, S. & Maekawa, S. Conductance quantization and magnetoresistance in magnetic point contacts. Phys. Rev. Lett. 84, 1003–1005 (2000).

    Article  CAS  Google Scholar 

  8. Versluijs, J. J., Bari, M. A. & Coey, J. M. D. Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 87, 026601 (2001).

    Article  Google Scholar 

  9. Chung, H. et al. Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Phys. Rev. Lett. 89, 287203 (2002).

    Article  CAS  Google Scholar 

  10. Yang, C.-S., Zhang, C., Redepenning, J. & Doudin, B. In-situ magnetoresistance of Ni nanocontact. Appl. Phys. Lett. 84, 2865–2867 (2004).

    Article  CAS  Google Scholar 

  11. Viret, M. et al. Magnetoresistance through a single nickel atom. Phys. Rev. B 66, 220401 (2002).

    Article  Google Scholar 

  12. Chopra, H. D., Sullivan, M. R., Armstrong, J. N. & Hua, S. Z. The quantum spin-valve in cobalt atomic point contacts. Nature Mater. 4, 832–837 (2005).

    Article  CAS  Google Scholar 

  13. Velev, J., Sabirianov, R., Jaswal, S. S. & Tsymbal, E. Y. Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203 (2005).

    Article  CAS  Google Scholar 

  14. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  15. Johnson, M. Magnetoelectronics (Elsevier B.V., Amsterdam, 2004).

    Google Scholar 

  16. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003).

    Article  CAS  Google Scholar 

  17. Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    Article  CAS  Google Scholar 

  18. Brumfiel, G. Magnetic effect sends physicists into a spin. Nature 426, 110–110 (2003).

    Article  CAS  Google Scholar 

  19. Yang, C.-S., Zhang, C., Redepenning, J. & Doudin, B. Anisotropy magnetoresistance of quantum ballistic nickel nanocontacts. J. Magn. Magn. Mater. 286, 186–188 (2005).

    Article  CAS  Google Scholar 

  20. Viret, M. et al. Giant anisotropic magneto-resistance in ferromagnetic atomic contacts. Eur. Phys. J. B 51, 1–4 (2006).

    Article  CAS  Google Scholar 

  21. Bolotin, K. I., Kuemmeth, F. & Ralph, D. C. Anisotropic magnetoresistance and anisotropic tunneling magnetoresistance due to quantum interference in ferromagnetic metal break junctions. Phys. Rev. Lett. 97, 127202 (2006).

    Article  Google Scholar 

  22. Keane, Z. K., Yu, L. H. & Natelson, D. Magnetoresistance of atomic-scale electromigrated nickel nanocontacts. Appl. Phys. Lett. 88, 062514 (2006).

    Article  Google Scholar 

  23. Thomson, W. On the electrodynamic qualities of metals. Proc. Royal Soc. 8, 546–550 (1857).

    Article  Google Scholar 

  24. McGuire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  Google Scholar 

  25. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223–231 (1957).

    Article  Google Scholar 

  26. Egelhoff, W. F. Jr et al. Artifacts in ballistic magnetoresistance measurements. J. Appl. Phys. 95, 7554–7559 (2004).

    Article  CAS  Google Scholar 

  27. Sabirianov, R., Solanki, A. K., Burton, J. D., Jaswal, S. S. & Tsymbal, E. Y. Domain wall magnetoresistance in Co nanowires. Phys. Rev. B 72, 054443 (2005).

    Article  Google Scholar 

  28. Burton, J. D., Sabirianiov, R. F., Jaswal, S. S., Tsymbal, E. Y. & Mryasov, O. N. Magnetic moment softening and domain wall resistance in Ni nanowires. Phys. Rev. Lett. 97, 077204 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nebraska Research Initiative and the National Science Foundation through the Materials Research Science and Engineering Center (grant DMR-0213808) and the Chemistry Division (grant CHE-0518644). B.D. acknowledges support from a ‘Chaire d'excellence’ fellowship of the French ANR.

Author information

Authors and Affiliations

Authors

Contributions

A.S. and C.Z. performed the experiment and analysed the data. E.Y.T. performed the theory, J.R. provided guidance for the electrochemistry part, and B.D. conceived and designed the experiment.

Corresponding authors

Correspondence to Andrei Sokolov or Bernard Doudin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1—S4 (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, A., Zhang, C., Tsymbal, E. et al. Quantized magnetoresistance in atomic-size contacts. Nature Nanotech 2, 171–175 (2007). https://doi.org/10.1038/nnano.2007.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing