Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates

Abstract

The incorporation of nanoparticles into polymers is a design approach that is used in many areas of materials science1,2. The concept is attractive because it enables the creation of materials with new or improved properties by mixing multiple constituents and exploiting synergistic effects. One important technological thrust is the development of structural materials with improved mechanical and thermal characteristics3,4. Equally intriguing is the possibility to design functional materials5 with unique optical6,7 or electronic properties8,9, catalytic activity10 or selective permeation11,12. The broad technological exploitation of polymer nanocomposites is, however, stifled by the lack of effective methods to control nanoparticle dispersion13,14,15. We report a simple and versatile process for the formation of homogeneous polymer/nanofibre composites. The approach is based on the formation of a three-dimensional template of well-individualized nanofibres, which is filled with any polymer of choice. We demonstrate that this template approach is broadly applicable and allows for the fabrication of otherwise inaccessible nanocomposites of immiscible components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanocomposite preparation by a template approach.
Figure 2: Whisker content and distribution of EO-EPI/whisker nanocomposites.
Figure 3: Shear moduli G′ of cellulose whisker nanocomposites with EO-EPI and polystyrene.
Figure 4: Shear moduli G′ of SWNT nanocomposites with PS.

Similar content being viewed by others

References

  1. Ajayan, P. M., Schadler, L. S. & Braun, P. B. Nanocomposite Science and Technology (Wiley VCH, Weinheim, 2003).

    Book  Google Scholar 

  2. Whitesides, G. M. Nanoscience, nanotechnology, and chemistry. Small 1, 172–179 (2005).

    Article  CAS  Google Scholar 

  3. Kojima, Y. et al. Mechanical properties of nylon 6–clay hybrid. J. Mater. Res. 8, 1185–1189 (1993).

    Article  CAS  Google Scholar 

  4. Bandi, S., Bell, M. & Schiraldi, D. A. Temperature-responsive clay aerogel–polymer composites. Macromolecules 38, 9216–9220 (2005).

    Article  CAS  Google Scholar 

  5. Geckeler, K. & Rosenberg, E. (eds) Functional Nanomaterials (American Scientific Publisher, Valencia, USA, 2006).

    Google Scholar 

  6. Ziolo, R. F. et al. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—a new optically transparent magnetic material. Science 257, 219–223 (1992).

    Article  CAS  Google Scholar 

  7. Hu, J. T. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    Article  CAS  Google Scholar 

  8. Sariciftci, N. S., Smilowitz, L., Heeger, A. J. & Wudl, F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474–1476 (1992).

    Article  CAS  Google Scholar 

  9. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  10. Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

    Article  CAS  Google Scholar 

  11. Merkel, T. C. et al. Ultrapermeable, reverse-selective nanocomposite membranes. Science 296, 519–522 (2002).

    Article  CAS  Google Scholar 

  12. Hinds, B. J. et al. Aligned multiwalled carbon nanotube membranes. Science 303, 62–65 (2004).

    Article  CAS  Google Scholar 

  13. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  14. Mackay, M. E. et al. General strategies for nanoparticle dispersion. Science 311, 1740–1743 (2006).

    Article  CAS  Google Scholar 

  15. Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: Where two small worlds meet. Science 314, 1107–1110 (2006).

    Article  CAS  Google Scholar 

  16. Gupta, S. et al. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Mater. 5, 229–233 (2006).

    Article  Google Scholar 

  17. de Souza Lima, M. M. & Borsali, R. Rodlike cellulose microcrystals: structure, properties, and applications. Macromol. Rapid Commun. 25, 771–778 (2004).

    Article  CAS  Google Scholar 

  18. Samir, M. A. S. A., Alloin, F. & Dufresne, A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6, 612–626 (2005).

    Article  CAS  Google Scholar 

  19. Marchessault, R. H., Morehead, F. F. & Walter, N. M. Liquid crystal systems from fibrillar polysaccharides. Nature 184, 632–633 (1959).

    Article  CAS  Google Scholar 

  20. Sturcova, A., Davies, J. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005).

    Article  CAS  Google Scholar 

  21. van den Berg, O., Capadona, J. R. & Weder, C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules 8, 1353–1357 (2007).

    Article  CAS  Google Scholar 

  22. Kuga, S., Kim, D. Y., Nishiyama, Y. & Brown, R. M. Nanofibrillar carbon from native cellulose. Mol. Cryst. Liq. Cryst. 387, 13–19 (2002).

    Article  CAS  Google Scholar 

  23. Ljungberg, N. B., Bortolussi, F., Boisson, C., Heux, L. & Cavaillé, J. Y. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005).

    Article  CAS  Google Scholar 

  24. Huang, Y., Yang, Y. Q. & Petermann, J. Atomic force microscopy on ethyl-cyanoethyl cellulose/polyacrylic acid composites with cholesteric order. Polymer 39, 5301–5306 (1998).

    Article  CAS  Google Scholar 

  25. Schroers, M., Kokil, A. & Weder, C. Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J. Appl. Polym. Sci. 93, 2883–2888 (2004).

    Article  CAS  Google Scholar 

  26. Takayanagi, M., Uemura, S. & Minami, S. Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J. Polym. Sci. C 5, 113–122 (1964).

    Article  Google Scholar 

  27. Ouali, N., Cavaillé, J. Y. & Pérez, J. Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast. Rubber Comp. Process. Appl. 16, 55–60 (1991).

    CAS  Google Scholar 

  28. Dong, X. M., Kimura, T., Revol, J.-F. & Gray, D. G. Effects of ion strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12, 2076–2082 (1996).

    Article  CAS  Google Scholar 

  29. Yamanaka, S. et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 24, 3141–3145 (1989).

    Article  CAS  Google Scholar 

  30. Bryning, M. B. et al. Carbon nanotube aerogels. Adv. Mater. 19, 661–664.

    Article  CAS  Google Scholar 

  31. Sen, R. et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibres and membranes by electrospinning. Nano Lett. 4, 459–464 (2004).

    Article  CAS  Google Scholar 

  32. Blake, R. et al. Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J. Mater. Chem. 16, 4206–4213 (2006).

    Article  CAS  Google Scholar 

  33. Morales-Teyssier, O., Sanchez-Valdes, S. & Ramos-de Valle, L. F. Effect of carbon nanofiber functionalization on the dispersion and physical and mechanical properties of polystyrene nanocomposites. Macromol. Mater. Eng. 219, 1547–1555 (2006).

    Article  Google Scholar 

  34. Chang, T.-E., Kisliuk, A., Rhodes, S. M., Brittain, W. J. & Sokolov, A. P. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47, 7740–7746 (2006).

    Article  CAS  Google Scholar 

  35. Wang, Z., Lu, M., Li, H.-U. & Guo, X.-Y. SWNTs–polystyrene composites preparation and electrical properties research. Mater. Chem. Phys. 100, 77–81 (2006).

    Article  CAS  Google Scholar 

  36. Sun, C. True density of microcrystalline cellulose. J. Pharm. Sci. 94, 2132–2134 (2005).

    Article  CAS  Google Scholar 

  37. Gere, J. M. & Timoshenko, S. P. Mechanics of Materials 3rd edn (Pearson Higher Education, New Jersey, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank L. McCorkle, M. Hitomi, H. Kahn and J.D. Mendez for help with the SEM, preparation of ultramicrotomed samples, AFM characterization, and conductivity measurements, respectively. We also thank S. Trittschuh and K. Shanmuganathan for their help with the preparation of cotton cellulose nanocrystals. Generous financial support from the Case School of Engineering (Presidential Research Initiative), the L. Stokes Cleveland VAMC Advanced Platform Technology Center, the Department of Veteran's Affairs Associate Investigator Career Development Program, and NIH under grant number R21NS053798-01 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.C., O.V., S.R. and C.W. conceived the approach and designed the experiments, J.C., O.V. and L.C. performed the experiments, J.C., O.V., M.S., D.T., S.R. and C.W. analysed and interpreted the data, and J.C., S.R. and C.W. wrote the paper.

Corresponding author

Correspondence to Christoph Weder.

Ethics declarations

Competing interests

A provisional US patent application on the process used in the paper was filed by Case Western Reserve University.

Supplementary information

Supplementary Information

Supplementary methods, supplementary figures S1–S9 and supplementary tables 1 and 2 (PDF 507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capadona, J., Van Den Berg, O., Capadona, L. et al. A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotech 2, 765–769 (2007). https://doi.org/10.1038/nnano.2007.379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing