Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recapturing and trapping single molecules with a solid-state nanopore

Abstract

The development of solid-state nanopores1,2,3,4,5,6,7, inspired by their biological counterparts8,9,10,11,12,13,14,15, shows great potential for the study of single macromolecules16,17,18,19,20,21. Applications such as DNA sequencing6,22,23 and the exploration of protein folding6 require control of the dynamics of the molecule's interaction with the pore, but DNA capture by a solid-state nanopore is not well understood24,25,26. By recapturing individual molecules soon after they pass through a nanopore, we reveal the mechanism by which double-stranded DNA enters the pore. The observed recapture rates and times agree with solutions of a drift-diffusion model. Electric forces draw DNA to the pore over micrometer-scale distances, and upon arrival at the pore, molecules begin translocation almost immediately. Repeated translocation of the same molecule improves measurement accuracy, offers a way to probe the chemical transformations and internal dynamics of macromolecules on sub-millisecond time and sub-micrometre length scales, and demonstrates the ability to trap, study and manipulate individual macromolecules in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the recapture experiment.
Figure 2: Capture rates and recapture probabilities.
Figure 3: Capture time histograms for returning molecules for different delays before voltage reversal.
Figure 4: Current versus time traces from a single-molecule trapping experiment.

Similar content being viewed by others

References

  1. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  2. Storm, A. J., Chen, J. H., Ling, X. S., Zandbergen, H. W. & Dekker, C. Electron-beam-induced deformations of SiO2 nanostructures. J. Appl. Phys. 98, 014307 (2005).

    Article  Google Scholar 

  3. Wu, M. Y., Krapf, D., Zandbergen, M., Zandbergen, H. & Batson, P. E. Formation of nanopores in a SiN/SiO2 membrane with an electron beam. Appl. Phys. Lett. 87, 113106 (2005).

    Article  Google Scholar 

  4. Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).

    Article  CAS  Google Scholar 

  5. Lo, C. J., Aref, T. & Bezryadin, A. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 17, 3264–3267 (2006).

    Article  CAS  Google Scholar 

  6. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  7. Martin, C. R. & Siwy, Z. S. Chemistry: Learning nature's way: Biosensing with synthetic nanopores. Science 317, 331–332 (2007).

    Article  CAS  Google Scholar 

  8. Bezrukov, S. M., Vodyanoy, I. & Parsegian, V. A. Counting polymers moving through a single-ion channel. Nature 370, 279–281 (1994).

    Article  CAS  Google Scholar 

  9. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  10. Gu, L. Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  Google Scholar 

  11. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  12. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  13. Bates, M., Burns, M. & Meller, A. Dynamics of DNA molecules in a membrane channel probed by active control techniques. Biophys. J. 84, 2366–2372 (2003).

    Article  CAS  Google Scholar 

  14. Ambjornsson, T., Apell, S. P., Konkoli, Z., Di Marzio, E. A. & Kasianowicz, J. J. Charged polymer membrane translocation. J. Chem. Phys. 117, 4063–4073 (2002).

    Article  CAS  Google Scholar 

  15. Henrickson, S. E., Misakian, M., Robertson, B. & Kasianowicz, J. J. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060 (2000).

    Article  CAS  Google Scholar 

  16. Li, J. L., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J. A. DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    Article  CAS  Google Scholar 

  17. Han, A. P. et al. Sensing protein molecules using nanofabricated poresn. Appl. Phys. Lett. 88, 093901 (2006).

    Article  Google Scholar 

  18. Fologea, D., Ledden, B., McNabb, D. S. & Li, J. Electrical characterization of protein molecules by a solid-state nanopore. Appl. Phys. Lett. 91, 053901 (2007).

    Article  Google Scholar 

  19. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore. Nano Lett. 5, 1905–1909 (2005).

    Article  CAS  Google Scholar 

  20. Fologea, D., Uplinger, J., Thomas, B., McNabb, D. S. & Li, J. L. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    Article  CAS  Google Scholar 

  21. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    Article  CAS  Google Scholar 

  22. Rhee, M. & Burns, M. A. Nanopore sequencing technology: research trends and applications. Trends Biotechnol. 24, 580–586 (2006).

    Article  CAS  Google Scholar 

  23. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    Article  CAS  Google Scholar 

  24. Muthukumar, M. Polymer translocation through a hole. J. Chem. Phys. 111, 10371–10374 (1999).

    Article  CAS  Google Scholar 

  25. Chen, P. et al. Probing single DNA molecule transport using fabricated nanopores. Nano Lett. 4, 2293–2298 (2004).

    Article  CAS  Google Scholar 

  26. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  CAS  Google Scholar 

  27. Storm, A. J., Chen, J. H., Zandbergen, H. W. & Dekker, C. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    Article  CAS  Google Scholar 

  28. Nkodo, A. E. et al. Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22, 2424–2432 (2001).

    Article  CAS  Google Scholar 

  29. Stellwagen, N. C., Gelfi, C. & Righetti, P. G. The free solution mobility of DNA. Biopolymers 42, 687–703 (1997).

    Article  CAS  Google Scholar 

  30. Nakane, J., Akeson, M. & Marziali, A. Evaluation of nanopores as candidates for electronic analyte detection. Electrophoresis 23, 2592–2601 (2002).

    Article  CAS  Google Scholar 

  31. Hall, J. E. Access resistance of a small circular pore. J. Gen. Physiol. 66, 531–532 (1975).

    Article  CAS  Google Scholar 

  32. Panwar, A. S. & Kumar, S. Time scales in polymer electrophoresis through narrow constrictions: A Brownian dynamics study. Macromolecules 39, 1279–1289 (2006).

    Article  CAS  Google Scholar 

  33. Grosberg, A. Y. & Khokhlov, A. R. Statistical Physics of Macromolecules (AIP Press, Woodbury, NY, 1994).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NGRI grant no. 5 R01 HG00370302. Some fabrication was carried out at Harvard University's Center for Nanoscale Systems, with the assistance of D. Bell, Yuan Lu and J.D. Deng. We thank E. Brandin for preparing the molecules for the trapping experiment, S. Coutreau and P. Testa for machining assistance, Jiali Li, D. Branton, S. Bezrukov, D. Hoogerheide and D. Vlassarev for useful discussions, and M. Biercuk for valuable suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Golovchenko.

Supplementary information

Supplementary Information

Supplementary experimental methods and supplementary figures S1–S3 (PDF 409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gershow, M., Golovchenko, J. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech 2, 775–779 (2007). https://doi.org/10.1038/nnano.2007.381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing