Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Local ionic and electron heating in single-molecule junctions

Abstract

A basic aim in molecular electronics is to understand transport through a single molecule connected to two electrodes. Substantial progress towards this goal has been made over the past decade as a result of advances in both experimental techniques and theoretical methods1,2,3. Nonetheless, a fundamental and technologically important issue, current-induced local heating of molecules4,5,6,7,8, has received much less attention. Here, we report on a combined experimental and theoretical study of local heating in single molecules (6-, 8- and 10-alkanedithiol) covalently attached to two gold electrodes as a function of applied bias and molecular length. We find that the effective local temperature of the molecular junction first increases with applied bias, and then decreases after reaching a maximum. At fixed bias, the effective temperature decreases with increasing molecular length. These experimental findings are in agreement with hydrodynamic predictions, which include both electron–phonon and electron–electron interactions7,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurements of conductance and stretching distance of single n-alkanedithiol junctions.
Figure 2: Measurements of stretching distance and effective temperature of single n-alkanedithiol junctions (n = 6, 8, 10) at small voltage bias.
Figure 3: Measurements of stretching distance and effective temperature of single n-alkanedithiol (n = 6, 8, 10) junctions with increasing voltage bias.

Similar content being viewed by others

References

  1. Lindsay, S. M. & Ratner, M. A. Molecular transport junctions: Clearing mists. Adv. Mater. 19, 23–31 (2007).

    Article  CAS  Google Scholar 

  2. Tao, N. J. Electron transport in molecular junctions. Nature Nanotechnol. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  3. Selzer, Y. & Allara, D. L. Single-molecule electrical junctions. Annu. Rev. Phys. Chem. 57, 593–623 (2006).

    Article  CAS  Google Scholar 

  4. Todorov, T. N. Local heating in ballistic atomic-scale contacts. Phil. Mag. B 77, 965–973 (1998).

    Article  CAS  Google Scholar 

  5. Segal, D. & Nitzan, A. Heating in current carrying molecular junctions. J. Chem. Phys. 117, 3915–3927 (2002).

    Article  CAS  Google Scholar 

  6. Chen, Y. C., Zwolak, M. & Di Ventra, M. Local heating in nanoscale conductors. Nano Lett. 3, 1691–1694 (2003).

    Article  CAS  Google Scholar 

  7. D'Agosta, R., Sai, N. & Di Ventra, M. Local electron heating in nanoscale conductors. Nano Lett. 6, 2935–2938 (2006).

    Article  CAS  Google Scholar 

  8. Huang, Z. F., Xu, B. Q., Chen, Y. C., Di Ventra, M. & Tao, N. J. Measurement of current-induced local heating in a single molecule junction. Nano Lett. 6, 1240–1244 (2006).

    Article  CAS  Google Scholar 

  9. D'Agosta, R. & Di Ventra, M. Hydrodynamic approach to transport and turbulence in nanoscale conductors. J. Phys. Condens. Matter. 18, 11059–11065 (2006).

    Article  CAS  Google Scholar 

  10. Bechtold, T., Rudnyi, E. B. & Korvink, J. G. Dynamic electro-thermal simulation of microsystems—a review. J. Micromech. Microeng. 15, R17–R31 (2005).

    Article  CAS  Google Scholar 

  11. Solomon, G. C. et al. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J. Chem. Phys. 124, 094704 (2006).

    Article  Google Scholar 

  12. Wang, W. Y., Lee, T., Kretzschmar, I. & Reed, M. A. Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer. Nano Lett. 4, 643–646 (2004).

    Article  CAS  Google Scholar 

  13. Kushmerick, J. G. et al. Vibronic contributions to charge transport across molecular junctions. Nano Lett. 4, 639–642 (2004).

    Article  CAS  Google Scholar 

  14. Kaun, C. C. & Seideman, T. Current-driven oscillations and time-dependent transport in nanojunctions. Phys. Rev. Lett. 94, 226801 (2005).

    Article  Google Scholar 

  15. Kaun, C. C., Jorn, R. & Seideman, T. Spontaneous oscillation of current in fullerene molecular junctions. Phys. Rev. B 74, 045415 (2006).

    Article  Google Scholar 

  16. Di Ventra, M., Pantelides, S.T. & Lang, N. D. Current-induced forces in molecular wires. Phys. Rev. Lett. 88, 046801 (2002).

    Article  CAS  Google Scholar 

  17. Xu, B. Q., Xiao, X. Y. & Tao, N. J. Measurements of single-molecule electromechanical properties. J. Am. Chem. Soc. 125, 16164–16165 (2003).

    Article  CAS  Google Scholar 

  18. Evans, E. Probing the relation between force, lifetime and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  19. Tsutsui, M., Kurokawa, S. & Sakai, A. Bias-induced local heating in atom-sized metal contacts at 77 K. Appl. Phys. Lett. 90, 133121 (2007).

    Article  Google Scholar 

  20. Li, X. et al. Conductance of single alkanedithiols: Conduction mechanism and effect of molecule–electrode contacts. J. Am. Chem. Soc. 128, 2135–2141 (2006).

    Article  CAS  Google Scholar 

  21. Xu, B. Q. & Tao, N. J. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    Article  CAS  Google Scholar 

  22. Xiao, X. Y., Nagahara, L. A., Rawlett, A. M. & Tao, N. J. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 127, 9235–9240 (2005).

    Article  CAS  Google Scholar 

  23. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  24. Evans, E. Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discussions 111, 1–16 (1998).

    Article  CAS  Google Scholar 

  25. Rubio-Bollinger, G., Bahn, S. R., Agrait, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the US National Science Foundation (ECS0304682, Z.F.H.), the US Department of Energy (DE-FG03-01ER45943, F.C. and Z.F.H.) and (DE-FG02-05ER46204, R.D.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Z.F.H. carried out the experiment and data analysis, F.C. assisted in the experiment, R.D. and M.D.V. worked out the theory and predicted local cooling, P.B. provided important comments and N.J.T. conceived the experiment.

Corresponding authors

Correspondence to Massimiliano Di Ventra or Nongjian Tao.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 (PDF 934 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Chen, F., D'agosta, R. et al. Local ionic and electron heating in single-molecule junctions. Nature Nanotech 2, 698–703 (2007). https://doi.org/10.1038/nnano.2007.345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.345

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing