Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single functional group interactions with individual carbon nanotubes

Abstract

Carbon nanotubes1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits2 and biosensors3 to field emitters4 and membranes5. These applications use the non-covalent interactions between the nanotubes and chemical functionalities6, often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy7 to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement setup, nanotube characterization, and site-specific force spectroscopy.
Figure 2: Comparison of the measured and calculated binding strength for the interactions of chemical functional groups with CNTs.
Figure 3: Electron density analysis of the NH2-functionalized tip interacting with a (14,0) CNT sidewall.

Similar content being viewed by others

References

  1. Hu, J. T., Odom, T. W. & Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435–445 (1999).

    Article  CAS  Google Scholar 

  2. Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    Article  CAS  Google Scholar 

  3. Chen, R. J. et al. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl Acad. Sci. USA 100, 4984–4989 (2003).

    Article  CAS  Google Scholar 

  4. Fan, S. S. et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512–514 (1999).

    Article  CAS  Google Scholar 

  5. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  6. Terrones, M. Science and technology of the twenty-first century: Synthesis, properties and applications of carbon nanotubes. Annu. Rev. Mater. Res. 33, 419–501 (2003).

    Article  CAS  Google Scholar 

  7. Noy, A., Vezenov, D. & Lieber, C. Chemical force microscopy. Annu. Rev. Mater. Sci. 27, 381–421 (1997).

    Article  CAS  Google Scholar 

  8. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  Google Scholar 

  9. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  CAS  Google Scholar 

  10. Liao, K. & Li, S. Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl. Phys. Lett. 79, 4225–4227 (2001).

    Article  CAS  Google Scholar 

  11. Decossas, S. Interaction forces between carbon nanotubes and an AFM tip. Europhys. Lett. 53, 742–748 (2001).

    Article  CAS  Google Scholar 

  12. Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. & Migler, K. B. Flow-induced properties of nanotube-filled polymer materials. Nature Mater. 3, 564–568 (2004).

    Article  CAS  Google Scholar 

  13. Barber, A. H., Cohen, S. R. & Wagner, H. D. Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82, 4140–4142 (2003).

    Article  CAS  Google Scholar 

  14. Poggi, M. A., Lillehei, P. T. & Bottomley, L. A. Chemical force microscopy on single-walled carbon nanotube paper. Chem. Mater. 17, 4289–4295 (2005).

    Article  CAS  Google Scholar 

  15. Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    Article  CAS  Google Scholar 

  16. Grigg, D. A., Russell, P. E. & Griffith, J. E. Tip–sample forces in scanning probe microscopy in air and vacuum. J. Vac. Sci. Technol. A 10, 680–683 (1992).

    Article  CAS  Google Scholar 

  17. Noy, A., Zepeda, S., Orme, C. A., Yeh, Y. & De Yoreo, J. J. Entropic barriers in nanoscale adhesion studied by variable temperature chemical force microscopy. J. Am. Chem. Soc. 125, 1356–1362 (2003).

    Article  CAS  Google Scholar 

  18. Johnson, K. L. Contact Mechanics (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  19. Ulman, A. Introduction to Ultrathin Organic Films (Academic Press, New York, 1991).

    Google Scholar 

  20. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  21. Usrey, M. L., Lippmann, E. S. & Strano, M. S. Evidence for a two-step mechanism in electronically selective single-walled carbon nanotube reactions. J. Am. Chem. Soc. 127, 16129–16135 (2005).

    Article  CAS  Google Scholar 

  22. Someya, T., Small, J., Kim, P., Nuckolls, C. & Yardley, J. T. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 3, 877–881 (2003).

    Article  CAS  Google Scholar 

  23. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).

    Article  CAS  Google Scholar 

  24. Star, A., Han, T. R., Gabriel, J. C. P. & Bradley, K. Interaction of aromatic compounds with carbon nanotubes: Correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett. 3, 1421–1423 (2003).

    Article  CAS  Google Scholar 

  25. Wise, K. E., Park, C., Siochi, E. J. & Harrison, J. S. Stable dispersion of single wall carbon nanotubes in polyimide: The role of noncovalent interactions. Chem. Phys. Lett. 391, 207–211 (2004).

    Article  CAS  Google Scholar 

  26. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  27. Dudko, O. K., Filippov, A. E., Klafter, J. & Urbakh, M. Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl Acad. Sci. USA 100, 11378–11381 (2003).

    Article  CAS  Google Scholar 

  28. Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L. & Perkins, F. K. Role of defects in single-walled carbon nanotube chemical sensors. Nano Lett. 6, 1747–1751 (2006).

    Article  CAS  Google Scholar 

  29. Jeffery, S. et al. Direct measurement of molecular stiffness and damping in confined water layers. Phys. Rev. B 70, 054114 (2004).

    Article  Google Scholar 

  30. Tsukruk, V. V. & Bliznyuk, V. N. Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir 14, 446–455 (1998).

    Article  CAS  Google Scholar 

  31. Srivastava, D., Menon, M. & Cho, K. J. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83, 2973–2976 (1999).

    Article  CAS  Google Scholar 

  32. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  33. Hamann, D. R. Generalized norm-conserving pseudopotentials. Phys. Rev. B 40, 2980 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hope-Weeks, N. Zaitseva (Lawrence Livermore National Laboratory, LLNL) and S. Peleshanko (Iowa State University) for technical assistance and T. Sulchek (LLNL) for discussions. A.N. acknowledges LDRD SI funding, and G.G. acknowledges support from DOE grant DE-FG02-06ER46262, V.V.T. and M.C.L. acknowledge funding from AFOSR, FA9550-05-1-0209 and NSF-NIRT-0506832 grants, and A.B.A. and R.W.F. acknowledge LLNL SEGRF Program support. J.C.G. is grateful for partial support from NSF Grant No. EEC-0425914. This work was performed at the Lawrence Livermore National Laboratory under the auspices of the US Department of Energy under Contract No. W-7405-Eng-48.

Author information

Authors and Affiliations

Authors

Contributions

A.N., V.V.T., G.G. and J.C.G. conceived the experiments. R.W.F, M.C.L., A.B.A. and A.N. performed the experiments, and analysed the data. G.C., J.C.G. and G.G. performed computer simulations. A.N., R.W.F., G.C. and G.G. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Raymond W. Friddle, Melburne C. Lemieux or Aleksandr Noy.

Supplementary information

Supplementary Information

Supplementary figures S1 and S2 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friddle, R., Lemieux, M., Cicero, G. et al. Single functional group interactions with individual carbon nanotubes. Nature Nanotech 2, 692–697 (2007). https://doi.org/10.1038/nnano.2007.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing