Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbon-based electronics

Abstract

The semiconductor industry has been able to improve the performance of electronic systems for more than four decades by making ever-smaller devices. However, this approach will soon encounter both scientific and technical limits, which is why the industry is exploring a number of alternative device technologies. Here we review the progress that has been made with carbon nanotubes and, more recently, graphene layers and nanoribbons. Field-effect transistors based on semiconductor nanotubes and graphene nanoribbons have already been demonstrated, and metallic nanotubes could be used as high-performance interconnects. Moreover, owing to the excellent optical properties of nanotubes it could be possible to make both electronic and optoelectronic devices from the same material.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of graphene and carbon nanotubes.
Figure 2: Inelastic scattering in carbon nanotubes.
Figure 3: Designs of carbon nanotube field-effect transistors.
Figure 4: Performance characteristics for a single nanotube transistor.
Figure 5: Ring-oscillator circuit based on a single nanotube.
Figure 6: Graphene nanoribbon transistors.
Figure 7: Light emission from a nanotube.
Figure 8: Photoconductivity with a nanotube.

Similar content being viewed by others

References

  1. Avouris, P. Electronics with carbon nanotubes. Phys. World 20, 40–45 (March 2007).

    Google Scholar 

  2. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  4. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    CAS  Google Scholar 

  5. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  6. Zhang, Y., Tan, Y. -W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  7. Novoselov, K. S. et al. Room-temperature quantum Hall effect in graphene. Science 315, 1379 (2007).

    CAS  Google Scholar 

  8. Saito, R., Dresselhaus, G., & Dresselhaus, M. S. (eds.) Physical properties of carbon nanotubes. (Imperial College Press, London, 1998)

    Google Scholar 

  9. Anantram, M. P. & Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006).

    CAS  Google Scholar 

  10. Charlier, J. -C., Blase, X., & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–733 (2007).

    CAS  Google Scholar 

  11. Chen, Z., Lin, Y.-M., Rooks, M. J., & Avouris, P. Graphene nano-ribbon electronics. Preprint at <http://arxiv.org/abs/cond-mat/0701599> (2007).

    Google Scholar 

  12. Han, M. Y., Őzyilmaz, B., Zhang, Y., & Kim, P. Energy band gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  13. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  14. Nakada, K., Fujita, M., Dresselhaus, G., & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996).

    CAS  Google Scholar 

  15. Son, Y.-W., Cohen, M. L., & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Google Scholar 

  16. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    CAS  Google Scholar 

  17. White, C. T., Li, J., Gunlycke, D. & Mintmire, J. W. Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 7, 825–830 (2007).

    CAS  Google Scholar 

  18. Avouris, P. et al. Carbon nanotube optoelectronics. Physica Status Solidi B 243, 3197–3203 (2006).

    CAS  Google Scholar 

  19. Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 32, 306 (1988).

    Google Scholar 

  20. Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 32, 317 (1988).

    Google Scholar 

  21. Ilani, S., Donev, L. A. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nature Phys. 2, 687–691 (2006).

    CAS  Google Scholar 

  22. Burke, P. An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. 2, 55–58 (2003).

    Google Scholar 

  23. Ando, T. & Nakanishi, T. Impurity scattering in carbon nanotubes — absence of backscattering. J. Phys. Soc. Jpn. 67, 1104–1113 (1998).

    Google Scholar 

  24. White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).

    CAS  Google Scholar 

  25. Klein, O. An introduction to Kaluza-Klein theories. Z. Phys. 37, 895 (1926).

    Google Scholar 

  26. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Google Scholar 

  27. Perebeinos, V., Tersoff, J. & Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).

    Google Scholar 

  28. Zhou, X., Park, J -Y, Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Google Scholar 

  29. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders, 1976).

    Google Scholar 

  30. Durkop, T., Getty, S. A., Cobas, E., & Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4, 35–39 (2004).

    Google Scholar 

  31. Perebeinos, V., Tersoff, J. & Avouris, P. Mobility in semiconducting carbon nanotubes at finite carrier density. Nano Lett. 6, 205–208 (2006).

    CAS  Google Scholar 

  32. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    CAS  Google Scholar 

  33. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Google Scholar 

  34. Park, J. Y. et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    CAS  Google Scholar 

  35. Chen, Y. -F. & Fuhrer, M. S. Electric-field-dependent charge-carrier velocity in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 236803 (2005).

    Google Scholar 

  36. Pennington, G. & Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B 68, 045426 (2003).

    Google Scholar 

  37. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005).

    CAS  Google Scholar 

  38. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410R (2006).

    Google Scholar 

  39. Ando, T. J. Excitons in carbon nanotubes. J. Phys. Soc. Jpn 66, 1066–1073 (1997).

    CAS  Google Scholar 

  40. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).

    Google Scholar 

  41. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004).

    Google Scholar 

  42. Pop, E. et al. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005).

    Google Scholar 

  43. Lazzeri, M., Pisanec, S., Mauri, F., Ferrari, A. C. & Robertson J. Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005).

    Google Scholar 

  44. Collins, P. G., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    CAS  Google Scholar 

  45. Collins, P. G. Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).

    CAS  Google Scholar 

  46. Naeemi, A., Sarvati, R. & Meindl, J. D. Performance comparison between carbon nanotube and copper interconnects for GSI. IEDM Digest 699–702 (2004).

  47. Tans, S. J., Verscheuren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    CAS  Google Scholar 

  48. Martel, R., Schmidt, T, Shea, H. R., Hertel, T. & Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998).

    CAS  Google Scholar 

  49. Sze, S. M. Physics of Semiconductor Devices. (Wiley, New York, 1981).

    Google Scholar 

  50. Appenzeller, J., Knoch, J., Radosavljević, M. & Avouris, P. Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. Phys. Rev. Lett. 92, 226802 (2004).

    CAS  Google Scholar 

  51. Léonard, F. & Tersoff, J. Role of Fermi-level pinning in nanotube Schottky diodes. Phys. Rev. Lett. 84, 4693–4696 (2000).

    Google Scholar 

  52. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001).

    CAS  Google Scholar 

  53. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    CAS  Google Scholar 

  54. Appenzeller, J. et al. Field-modulated carrier transport in carbon nanotube transistors. Phys. Rev. Lett. 89, 126801 (2002).

    CAS  Google Scholar 

  55. Javey, A. et al. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    CAS  Google Scholar 

  56. Appenzeller, J., Radosavljevi, M., Knoch, J. & Avouris, P. Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92, 048301 (2004).

    CAS  Google Scholar 

  57. Chen, Z., Appenzeller, J. Knoch, J., Lin, Y-M & Avouris, P. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497–1502 (2005).

    CAS  Google Scholar 

  58. Radosavljevic, M., Heinze, S., Tersoff, J. & Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003).

    CAS  Google Scholar 

  59. Avouris, P. Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003).

    CAS  Google Scholar 

  60. Lin, Y. -M., Appenzeller, J., Knoch, J. & Avouris, P. High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 4, 481–489 (2005).

    Google Scholar 

  61. Chen, J., Klinke, C., Afzali, A. & Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).

    Google Scholar 

  62. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2006).

    Google Scholar 

  63. Javey, A. et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett. 5, 345–348 (2005).

    CAS  Google Scholar 

  64. Appenzeller, J., Lin, Y.-M., Knoch, J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).

    CAS  Google Scholar 

  65. Javey, A. et al. High-k dielectrics for advanced carbon nanotube transistors and logic gates. Nature Mater. 1, 241–246 (2002).

    CAS  Google Scholar 

  66. Javey, A. et al. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 4, 1319–1322 (2004).

    CAS  Google Scholar 

  67. Seidel, R. V. et al. Sub-20 nm short channel carbon nanotube transistors. Nano Lett. 5, 147–150 (2005).

    CAS  Google Scholar 

  68. Solomon, P. M. in Future Trends in Microelectronics: Up the Nano Creek (eds Luryi, S., Xu, J. M., & Zaslavsky, A.) 212–223 (Wiley, New York, 2007).

    Google Scholar 

  69. Castro, L. C. et al. Method for predicting fT for carbon nanotube FETs. IEEE Trans. Nanotechnol. 4, 699–704 (2005).

    Google Scholar 

  70. Frank, D. J. & Appenzeller, J. High frequency response in carbon nanotube field-effect transistors. IEEE Electron. Device Lett. 25, 34–36 (2004).

    CAS  Google Scholar 

  71. Li, S. D., Yu, Z., Yen, S-F, Tang, W. C. & Burke, P. J. Carbon nanotube transistor operation at 2.6 GHz. Nano Lett. 4, 753–756 (2004).

    CAS  Google Scholar 

  72. Rosenblatt, S., Lin, H., Sazonova, V., Tiwari, S. & McEuen, P. L. Mixing at 50GHz using a single-walled carbon nanotube transistor. Appl. Phys. Lett. 87, 153111–15313 (2005).

    Google Scholar 

  73. Bethoux, J.-M. et al. An 8-GHz ft carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron. Device Lett. 27, 681–683 (2006).

    CAS  Google Scholar 

  74. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    CAS  Google Scholar 

  75. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).

    CAS  Google Scholar 

  76. Liu, X., Lee, C., Zhou, C. & Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79, 3329–3331 (2001).

    CAS  Google Scholar 

  77. Javey, A., Wang, Q., Ural, A., Li, Y. & Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2, 929–932 (2002).

    CAS  Google Scholar 

  78. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    CAS  Google Scholar 

  79. Katsnelson, M. I. Minimal conductivity in bilayer graphene. Eur. Phys. J. B 51, 157 (2006).

    CAS  Google Scholar 

  80. Gusynin, V. P. & Sharapov, S. G. Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett. 95, 146801 (2005).

    CAS  Google Scholar 

  81. Peres, N. M. R., Guines, F. & Neto, A. H. C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 73, 125411 (2006).

    Google Scholar 

  82. Tworzydo, J., Trauzettel, B., Titov, M., Rycerz, A. & Beenakker, C. W. J. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006).

    Google Scholar 

  83. Ziegler, K. Robust transport properties in graphene. Phys. Rev. Lett. 97, 266802 (2006).

    CAS  Google Scholar 

  84. Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73, 085421 (2006).

    Google Scholar 

  85. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003).

    CAS  Google Scholar 

  86. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett. 93, 076803 (2004).

    Google Scholar 

  87. Freitag, M. et al. Electrically excited, localized infrared emission from single carbon nanotubes. Nano Lett. 6, 1425–1433 (2006).

    CAS  Google Scholar 

  88. Freitag, M. et al. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    CAS  Google Scholar 

  89. Qiu, X., Freitag, M., Perebeinos, V. & Avouris, P. Photoconductivity spectra of single carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 5, 749–752 (2005).

    CAS  Google Scholar 

  90. Balasubramanian, K et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004).

    CAS  Google Scholar 

  91. Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007).

    CAS  Google Scholar 

  92. Freitag, M. et al. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett. 91, 031101 (2007).

    Google Scholar 

  93. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by electric field effect. Preprint at <http://arxiv.org/abs/cond-mat/0611342> (2006).

    Google Scholar 

  94. Ohta, T. et al. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    CAS  Google Scholar 

  95. Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007).

    CAS  Google Scholar 

  96. Abanin, D. A. & Levitov, L. S. Quantized transport in graphene p-n junctions in a magnetic field. Science 317, 641–643 (2007).

    CAS  Google Scholar 

  97. Hueso, L. E. et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410–413 (2007).

    CAS  Google Scholar 

  98. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phaedon Avouris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech 2, 605–615 (2007). https://doi.org/10.1038/nnano.2007.300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing