Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers

Abstract

Solubilizing and purifying carbon nanotubes remains one of the foremost technological hurdles in their investigation and application. We report a dramatic improvement in the preparation of single-walled carbon nanotube solutions based on the ability of specific aromatic polymers to efficiently disperse certain nanotube species with a high degree of selectivity. Evidence of this is provided by optical absorbance and photoluminescence excitation spectra, which show suspensions corresponding to up to 60% relative concentration of a single species of isolated nanotubes with fluorescence quantum yields of up to 1.5%. Different polymers show the ability to discriminate between nanotube species in terms of either diameter or chiral angle. Modelling suggests that rigid-backbone polymers form ordered molecular structures surrounding the nanotubes with n-fold symmetry determined by the tube diameter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence excitation maps of various polymer-SWNT samples in toluene solutions prepared using nanotubes grown by the HiPCO process as starting material.
Figure 2: Molecular mechanics simulations of the polymer wrapping mechanism.
Figure 3: Absorbance spectra comparing SWNTs from separate growth methods dispersed in aqueous SDBS surfactant solution (red and blue lines) and in toluene solutions of the polymer PFO (black lines).
Figure 4: Highly resolved PL and Raman spectra may also be obtained using PFO to solubilize SWNTs from the CoMoCAT process.
Figure 5: Graphene sheet maps showing normalized PL intensities for different solutions.

Similar content being viewed by others

References

  1. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes (Springer, Berlin, 2001).

    Book  Google Scholar 

  2. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  CAS  Google Scholar 

  3. Nish, A. & Nicholas, R. J. Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in aqueous sodium dodecylsulfate solution. Phys. Chem. Chem. Phys. 8, 3547–3551 (2006).

    Article  CAS  Google Scholar 

  4. Matarredona, O. et al. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107, 13357–13367 (2003).

    Article  CAS  Google Scholar 

  5. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    Article  CAS  Google Scholar 

  6. Arnold, M. S., Green, A. A., Hulvat, J. F., Strupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    Article  CAS  Google Scholar 

  7. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  8. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    Article  CAS  Google Scholar 

  9. Zheng M. & Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 126, 15490–15494 (2004).

    Article  CAS  Google Scholar 

  10. O'Connell, M. J. et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem. Phys. Lett. 342, 265–271 (2001).

    Article  CAS  Google Scholar 

  11. Rice, N. A., Soper, K., Zhou, N., Merschrod, E. & Zhao, Y. Dispersing as-prepared single-walled carbon nanotube powders with linear conjugated polymers. Chem. Commun. 47, 4937–4939 (2006).

    Article  Google Scholar 

  12. Wei, C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano. Lett. 6, 1627–1631 (2006).

    Article  CAS  Google Scholar 

  13. Chen, J. et al. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 124, 9034–9035 (2002).

    Article  CAS  Google Scholar 

  14. Yang, M., Koutsos, V. & Zaiser, M. Interactions between polymers and carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B 109, 10009–10014 (2005).

    Article  CAS  Google Scholar 

  15. McCarthy, B. et al. A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer. J. Phys. Chem. B 106, 2210–2216 (2002).

    Article  CAS  Google Scholar 

  16. Weisman, R. B. & Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano. Lett. 3, 1235–1238 (2003).

    Article  CAS  Google Scholar 

  17. Ando, T. Excitons in carbon nanotubes revisited: Dependence on diameter, Aharonov-Bohm flux, and strain. J. Phys. Soc. Jpn. 73, 3351–3363 (2004).

    Article  CAS  Google Scholar 

  18. Jones, M. et al. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 71, 115426 (2005).

    Article  Google Scholar 

  19. Miyauchi, Y., Oba, M. & Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 74, 205440 (2006).

    Article  Google Scholar 

  20. Ponder, J. W. & Richards, F. M. An efficient Newton-like method for molecular mechanics energy minimization of large molecules. J. Comput. Chem. 8, 1016–1024 (1987).

    Article  CAS  Google Scholar 

  21. Allinger, N. L., Yuh, Y. H. & Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 111, 8551–8566 (1989).

    Article  CAS  Google Scholar 

  22. Hornbostal, B., Haluska, M., Cech, J., Dettlaff, U. & Roth, S. Arc discharge and laser ablation synthesis of single-walled carbon nanotubes. NATO Science Series II: Mathematics, Physics and Chemistry 222, 1–18 (2005).

    Google Scholar 

  23. Reich, S., Thomson, C. & Robertson, J. Exciton resonances quench the photoluminescence of zigzag carbon nanotubes. Phys. Rev. Lett. 95, 077402 (2005).

    Article  Google Scholar 

  24. Oyama, Y. et al. Photoluminescence intensity of single-wall carbon nanotubes. Carbon 44, 873–879 (2006).

    Article  CAS  Google Scholar 

  25. Huang, X. Y., McLean, R. S. & Zheng, M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77, 6225–6228 (2005).

    Article  CAS  Google Scholar 

  26. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006).

    Article  CAS  Google Scholar 

  27. Weisman, R. B., Bachilo, S. M. & Tsyboulski, D. Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension. Appl. Phys. A 78, 1111–1116 (2004).

    Article  CAS  Google Scholar 

  28. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    Article  CAS  Google Scholar 

  29. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Basic Technology Program of the Engineering and Physical Sciences Research Council for their financial support and C. Pears, in Biochemistry, at the University of Oxford for use of ultracentrifuge facilities. Jeong-Yuan Hwang would like to acknowledge the National Science Council of Taiwan and the Thousand Mile Horse Program for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

A.N. performed the data analysis and co-wrote the paper. J.-Y.H. prepared the samples and did the optical absorbance and PL measurements. J.D. carried out the computer simulations and took the Raman spectra. R.J.N. coordinated the project and co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Robin J. Nicholas.

Ethics declarations

Competing interests

We have applied for a British patent on 18 May 2007 entitled 'Method of carbon nanotube selection'. Some of the results and methods used in this paper were added to our patent filing.

Supplementary information

Supplementary Information

Supplementary figures S1-S3 (PDF 717 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nish, A., Hwang, JY., Doig, J. et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech 2, 640–646 (2007). https://doi.org/10.1038/nnano.2007.290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.290

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing