Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-assembly of an organic–inorganic block copolymer for nano-ordered ceramics

Abstract

Self-assembly is a promising approach for achieving controlled nanoscale architectures in ceramics. The addition of ceramic-forming precursors to templating agents such as self-assembled surfactants or organic block copolymers (BCPs) has thus far been the primary route to forming ordered nanoporous oxides1,2,3,4,5 and nanostructured non-oxide ceramics6,7,8,9. In spite of its viability, however, this approach has several intrinsic shortcomings, including: (1) stringent requirements for amphiphilicity between template and precursor, lack of which may lead to macro-phase separation and loss of nano-scale order; (2) morphologies that can change uncontrollably with varying amounts of added ceramic precursor. Here we report a novel single-source ceramic precursor, based on a hybrid organic–inorganic BCP of polynorbornene–decaborane, that enables the formation of ordered ceramic nanostructures with tunable morphology and composition. In particular, we describe the synthesis of nanostructured boron carbonitride and mesoporous boron nitride, the latter of which exhibits the highest reported surface area for this material to date.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The self-assembly and pyrolysis of a block copolymer (PNB-b-PDB30) comprising a polynorbornene (PNB) segment and a decaborane-based one (PDB).
Figure 2: The chemical synthesis of the hybrid block copolymer containing PNB and PDB segments.
Figure 3: TEM bright-field images of the self-assembled microstructures of PNB-b-PDB30 after solvent evaporation.
Figure 4: SEM images of a pyrolysed hybrid BCP.

Similar content being viewed by others

References

  1. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  2. Templin, M. et al. Organically modified aluminosilicate microstructures from block copolymer phases. Science 278, 1795–1798 (1997).

    Article  CAS  Google Scholar 

  3. Pai, R. A. et al. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303, 507–510 (2004).

    Article  CAS  Google Scholar 

  4. Chan, V. Z.-H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self-assembling polymer precursors. Science 286, 1716–1719 (1999).

    Article  CAS  Google Scholar 

  5. Ulrich, R., Du Chesne, A., Templin, M. & Wiesner, U. Nano-objects with controlled shape, size and composition form block copolymer mesophases. Adv. Mater. 11, 141–146, (1999).

    Article  CAS  Google Scholar 

  6. Kamperman, M., Garcia, C. B. W., Du, P., Ow, H. & Wiesner, U. Ordered mesoporous ceramics stable up to 1500 °C from diblock copolymer mesophase. J. Am. Chem. Soc. 126, 14708–14709 (2004).

    Article  CAS  Google Scholar 

  7. Wan, J. et al. Nanostructured non-oxide ceramics templated via block copolymer self-assembly. Chem. Mater. 17, 5613–5617 (2005).

    Article  CAS  Google Scholar 

  8. Armatas, G. S. & Knatzidis, M. G. Mesostructured germanium with cubic pore symmetry. Nature 441, 1122–1125 (2006).

    Article  CAS  Google Scholar 

  9. Sun, D. et al. Hexagonal nanoporous germanium through surfactant-driven self-assembly of zintl clusters. Nature 441, 1126–1130 (2006).

    Article  CAS  Google Scholar 

  10. Galloro, J. et al. Replicating the structure of a crosslinked polyferrocenylsilane inverse opal in the form of a magnetic ceramic. Adv. Funct. Mater. 12, 382–388 (2002).

    Article  CAS  Google Scholar 

  11. Temple, K. et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane). Adv. Mater. 15, 297–300 (2003).

    Article  CAS  Google Scholar 

  12. Bates, F. S. & Fredrickson, G. H. Block copolymers – designer soft materials. Physics Today 52, 32–38 (1999).

    Article  CAS  Google Scholar 

  13. Shen, Q. H. & Interrante, L. V. Structural characterization of poly(silylenemethylene). Macromolecules 29, 5788–5796 (1996).

    Article  CAS  Google Scholar 

  14. Seyferth, D., Strohmann, C., Dando, N. R. & Perrotta, A. J. Poly(ureidosilazanes): preceramic polymeric precursors for silicon carbonitride and silicon nitride. Synthesis, characterization, and pyrolytic conversion to Si3N4/SiC ceramics. Chem. Mater. 7, 2058–2066 (1995).

    Article  CAS  Google Scholar 

  15. Wei, X., Carroll, P. J. & Sneddon, L. G. New routes to organodecaborane polymers via ruthenium-catalyzed ring-opening metathesis polymerization. Organometallics 23, 163–165 (2004).

    Article  CAS  Google Scholar 

  16. Welna, D. T., Bender, J. D., Wei, X., Sneddon, L. G. & Allcock, H. R. Preparation of boron-carbide/carbon nanofibers from a poly(norbornenedecaborane) single-source precursor via electrostatic spinning. Adv. Mater. 17, 859–862 (2005).

    Article  CAS  Google Scholar 

  17. Wei, X., Carroll, P. J., Sneddon, L. G. Ruthenium-catalyzed ring-opening polymerization syntheses of poly(organodecaboranes): New single-source boron-carbide precursors. Chem. Mater. 18, 1113–1123 (2006).

    Article  CAS  Google Scholar 

  18. Choi, T.-L. & Grubbs, R. H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew. Chem. Int. Edn. 42, 1743–1746 (2003).

    Article  CAS  Google Scholar 

  19. Lodge, T. P., Pudil, B. & Hanley, K. J. The full phase behavior for block copolymer in solvents of varying selectivity. Macromolecules 35, 4707–4717 (2002).

    Article  CAS  Google Scholar 

  20. Funaki, Y. et al. Influence of casting solvents on microphase-separated structures of poly(2-vinylpyridine)-block-polyisoprene. Polymer 40, 7147–7156 (1999).

    Article  CAS  Google Scholar 

  21. Mirabelli, M. G. L. & Sneddon, L. G. Synthesis of boron nitride via a polymeric vinylpentaborane precursor. Inorg. Chem. 27, 3271–3272 (1988).

    Article  CAS  Google Scholar 

  22. Rees, W. S. Jr & Seyferth, D. High-yield synthesis of boron carbide (B4C)/boron nitride ceramic materials by pyrolysis of polymeric Lewis base adducts of decarborane(14). J. Am. Ceram. Soc. 71, C194–C196 (1988).

    Article  CAS  Google Scholar 

  23. Dibandjo, P., Chassagneux, F., Bois, L., Sigala, C. & Miele, P. Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. J. Mater. Chem. 15, 1917–1923 (2005).

    Article  CAS  Google Scholar 

  24. Dibandjo, P. et al. Synthesis of boron nitride with ordered mesostructure. Adv. Mater. 17, 571–574 (2005).

    Article  CAS  Google Scholar 

  25. Vinu, A. et al. Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem. Mater. 17, 5887–5890 (2005).

    Article  CAS  Google Scholar 

  26. Han, W. Q., Brutchey, R., Tilley, T. D. & Zettl, A. Activated boron nitride derived from activated carbon. Nano Lett. 4, 173–176 (2004).

    Article  CAS  Google Scholar 

  27. Hagio, T., Nonaka, K. & Sato, T. Microstructural development with crystallization of hexagonal boron nitride. J. Mater. Sci. Lett. 16, 795–798 (1997).

    Article  CAS  Google Scholar 

  28. Jacobsen, C. J. H. Boron nitride: a novel support for ruthenium-based ammonia synthesis catalysts. J. Catal. 200, 1–3 (2001).

    Article  CAS  Google Scholar 

  29. Hansen, T. W. et al. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508–1510 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M. Blohm for financial support as well as M. Latorre and D. Vissani (thermal analysis), G. Goddard (MALLS), L. Denault (SEM), P. Donahue (NMR), W. Heward (X-ray), J. Mckiever (BET) and J. Leist (elemental analysis) for technical support. We also wish to thank S.T. Dhanasekaran at UMASS Amherst for assistance with SAXS data collection and Xiaolan Wei for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and J.W. conceived, designed and performed the experiments. S.T. performed the TEM analysis. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Patrick R. L. Malenfant or Julin Wan.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malenfant, P., Wan, J., Taylor, S. et al. Self-assembly of an organic–inorganic block copolymer for nano-ordered ceramics. Nature Nanotech 2, 43–46 (2007). https://doi.org/10.1038/nnano.2006.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing