Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional non-volatile programmable p–n junctions

Abstract

Semiconductor p–n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p–n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p–n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p–n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stacked WSe2/h-BN/graphene van der Waals heterostructures for SFG-FETs.
Figure 2: Non-volatile WSe2 p–n junctions achieved in the WSe2/h-BN/graphene device.
Figure 3: WSe2/h-BN/graphene device for non-volatile p–n junction memories and logic rectifiers.
Figure 4: WSe2/h-BN/graphene device for photovoltaics and non-volatile photovoltaic memories.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  3. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  CAS  Google Scholar 

  4. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  5. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotech. 10, 407–411 (2015).

    Article  CAS  Google Scholar 

  6. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  CAS  Google Scholar 

  7. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  8. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  9. Lohmann, T., von Klitzing, K. & Smet, J. H. Four-terminal magneto-transport in graphene p–n junctions created by spatially selective doping. Nano Lett. 9, 1973–1979 (2009).

    Article  CAS  Google Scholar 

  10. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

    Article  CAS  Google Scholar 

  11. Sun, Z. Z. et al. Towards hybrid superlattices in graphene. Nat. Commun. 2, 559 (2011).

    Article  Google Scholar 

  12. Zhang, Z., Huang, H., Yang, X. & Zang, L. Tailoring electronic properties of graphene by ππ stacking with aromatic molecules. J. Phys. Chem. Lett. 2, 2897–2905 (2011).

    Article  CAS  Google Scholar 

  13. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).

    Article  CAS  Google Scholar 

  14. Huang, C. et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    Article  CAS  Google Scholar 

  15. Deng, Y. X. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  16. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  CAS  Google Scholar 

  17. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  18. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotech. 9, 262–267 (2014).

    Article  CAS  Google Scholar 

  19. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotech. 9, 257–261 (2014).

    Article  CAS  Google Scholar 

  20. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotech. 9, 268–272 (2014).

    Article  CAS  Google Scholar 

  21. Groenendijk, D. J. et al. Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14, 5846–5852 (2014).

    Article  CAS  Google Scholar 

  22. Buscema, M., Groenendijk, D. J., Steele, G. A., van der Zant, H. S. J. & Castellanos-Gomez, A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014).

    Article  CAS  Google Scholar 

  23. Das, S., Robinson, J. A., Dubey, M., Terrones, H. & Terrones, M. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45, 1–27 (2015).

    Article  CAS  Google Scholar 

  24. del Corro, E. et al. Excited excitonic states in 1L, 2L, 3L, and bulk WSe2 observed by resonant Raman spectroscopy. ACS Nano 8, 9629–9635 (2014).

    Article  CAS  Google Scholar 

  25. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).

    Article  CAS  Google Scholar 

  26. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  27. Hibino, H. et al. Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys. Rev. B 79, 125437 (2009).

    Article  Google Scholar 

  28. Kim, K. et al. Band alignment in WSe2–graphene heterostructures. ACS Nano 9, 4527–4532 (2015).

    Article  CAS  Google Scholar 

  29. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

    Article  Google Scholar 

  30. Li, D. et al. Nonvolatile floating-gate memories based on stacked black phosphorus–boron nitride–MoS2 heterostructures. Adv. Funct. Mater. 25, 7360–7365 (2015).

    Article  CAS  Google Scholar 

  31. Banwell, T. C. & Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 36, 291–292 (2000).

    Article  Google Scholar 

  32. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    Article  CAS  Google Scholar 

  33. Zhang, E. Z. et al. Tunable charge-trap memory based on few-layer MoS2 . ACS Nano 9, 612–619 (2015).

    Article  CAS  Google Scholar 

  34. Jariwala, D. et al. Gate-tunable carbon nanotube–MoS2 heterojunction p–n diode. Proc. Natl Acad. Sci. USA 110, 18076–18080 (2013).

    Article  CAS  Google Scholar 

  35. Furchi, M. M., Pospischil, A., Libisch, F., Burgdoerfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  CAS  Google Scholar 

  36. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotech. 11, 42–46 (2016).

    Article  CAS  Google Scholar 

  37. Yu, P. et al. Metal–semiconductor phase-transition in WSe2(1-x)Te2x monolayer. Adv. Mater. 29, 1603991 (2017).

    Article  Google Scholar 

  38. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  39. Perello, D. J., Chae, S. H., Song, S. & Lee, Y. H. High-performance n-type black phosphorus transistors with type control via thickness and contact-metal engineering. Nat. Commun. 6, 7809 (2015).

    Article  CAS  Google Scholar 

  40. Batmunkh, M., Bat-Erdene, M. & Shapter, J. G. Phosphorene and phosphorene-based materials—prospects for future applications. Adv. Mater. 28, 8586–8617 (2016).

    Article  CAS  Google Scholar 

  41. Constantinescu, G. C. & Hine, N. D. M. Multipurpose black-phosphorus/hBN heterostructures. Nano Lett. 16, 2586–2594 (2016).

    Article  CAS  Google Scholar 

  42. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Natural Science Foundation of Shanghai (16ZR1439400, 17ZR1447700), National Natural Science Foundation of China (11104204, 21301032), the National Key Research and Development Program of China (2016YFA0203900), the Singapore National Research Foundation under NRF RF Award No. NRF-RF2013-08, the financial support from MOE under AcRF Tier 2 MOE2015-T2-2-007, was also partly supported through the BRI program, ‘Science and Emerging Technology of 2D Atomic Layered Materials and Devices’, funded by the United States Air Force Office of Scientific Research (AFOSR) Grant No. BAA-AFOSR-2013-0001. The authors thank B. Li and X. Xu for the device fabrication and AFM characterization and N. Xuanyuan for the Kelvin probe force microscopy (KPFM) measurement.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and D.L. conceived and designed the project. D.L. performed the device fabrication and properties characterization. M.C. carried out the AFM and Raman measurements. P.Y. contributed the WSe1.2Te0.8 crystals. Z.Z., Z.L. and P.M.A. supervised the experiment. Z.Z., D.L., Z.S., Z.L. and P.M.A. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zheng Liu, Pulickel M. Ajayan or Zengxing Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Chen, M., Sun, Z. et al. Two-dimensional non-volatile programmable p–n junctions. Nature Nanotech 12, 901–906 (2017). https://doi.org/10.1038/nnano.2017.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing