Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant thermoelectric nanophotonics

Abstract

Photodetectors are typically based either on photocurrent generation from electron–hole pairs in semiconductor structures or on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. Here, we show subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large localized temperature gradients even with unfocused, spatially uniform illumination to generate a thermoelectric voltage. We show that such structures are tunable and are capable of wavelength-specific detection, with an input power responsivity of up to 38 V W–1, referenced to incident illumination, and bandwidth of nearly 3 kHz. This is obtained by combining resonant absorption and thermoelectric junctions within a single suspended membrane nanostructure, yielding a bandgap-independent photodetection mechanism. We report results for both bismuth telluride/antimony telluride and chromel/alumel structures as examples of a potentially broader class of resonant nanophotonic thermoelectric materials for optoelectronic applications such as non-bandgap-limited hyperspectral and broadband photodetectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Guided mode resonance and thermal design.
Figure 2: Thermoelectric material performance in guided mode resonance structure design.
Figure 3: Hyperspectral absorption tunability of guided mode resonance structures: theory and experiment.
Figure 4: Spectral, angle and time-dependent structure performance.

Similar content being viewed by others

References

  1. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  2. Skoplaki, E. & Palyvos, J. A. On the temperature dependence of photovoltaic module electrical performance: a review of efficiency/power correlations. Solar Energy 83, 614–624 (2009).

    Article  CAS  Google Scholar 

  3. Innes, R. A. & Sambles, J. R. Simple thermal detection of surface plasmon-polaritons. Solid State Commun. 56, 493–496 (1985).

    Article  CAS  Google Scholar 

  4. Weeber, J. C. et al. Thermo-electric detection of waveguided surface plasmon propagation. Appl. Phys. Lett. 99, 031113 (2011).

    Article  Google Scholar 

  5. Tsiatmas, A. et al. Optical generation of intense ultrashort magnetic pulses at the nanoscale. New J. Phys. 15, 113035 (2013).

    Article  Google Scholar 

  6. Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotech. 9, 814–819 (2014).

    Article  CAS  Google Scholar 

  7. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  8. Russer, J. A. et al. A nanostructured long-wave infrared range thermocouple detector. IEEE Trans. Terahertz Sci. Technol. 5, 335–343 (2015).

    Article  CAS  Google Scholar 

  9. Szakmany, G. P., Orlov, A. O., Bernstein, G. H. & Porod, W. Novel nanoscale single-metal polarization-sensitive infrared detectors. IEEE Trans. Nanotechnol. 14, 379–383 (2015).

    Article  CAS  Google Scholar 

  10. Gawarikar, A. S., Shea, R. P. & Talghader, J. J. High detectivity uncooled thermal detectors with resonant cavity coupled absorption in the long-wave infrared. IEEE Trans. Electron Dev. 16, 2586–2591 (2013).

    Article  Google Scholar 

  11. Volklein, F. & Wiegand, A. High-sensitivity and detectivity radiation thermopiles made by multilayer technology. Sensor Actuat. A 24, 1–4 (1990).

    Article  Google Scholar 

  12. Hsu, A. L. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 7211–7216 (2015).

    Article  CAS  Google Scholar 

  13. Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).

    Article  CAS  Google Scholar 

  14. Amatya, R. & Ram, R. J. Solar thermoelectric generator for micropower applications. J. Electron. Mater. 39, 1735–1740 (2010).

    Article  CAS  Google Scholar 

  15. Mokkapati, S., Saxena, D., Tan, H. H. & Jagadish, C. Optical design of nanowire absorbers for wavelength selective photodetectors. Sci. Rep. 5, 15339 (2015).

    Article  CAS  Google Scholar 

  16. Chang, C. Y. et al. Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays. Appl. Phys. Lett. 91, 163107 (2007).

    Article  Google Scholar 

  17. Wipiejewski, T., Panzlaff, K. & Ebeling, K. J. Resonant wavelength selective photodetectors. Microelectron. Eng. 19, 223–228 (1992).

    Article  Google Scholar 

  18. Szczech, J. R., Higgins, J. M. & Jin, S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011).

    Article  CAS  Google Scholar 

  19. Wang, X. & Wang, Z. M. Nanoscale Thermoelectrics (Springer Science + Business Media, 2013).

    Google Scholar 

  20. Kōmoto, K. & Mori, T. Thermoelectric Nanomaterials: Materials Design and Applications (Springer, 2013).

    Book  Google Scholar 

  21. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  CAS  Google Scholar 

  22. Christ, A. et al. Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys. Rev. B 70, 125113 (2004).

    Article  Google Scholar 

  23. Gallinet, B. & Martin, O. J. F. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano 5, 8999–9008 (2011).

    Article  CAS  Google Scholar 

  24. Cataldo, G. et al. Infrared dielectric properties of low-stress silicon nitride. Opt. Lett. 37, 4200–4202 (2012).

    Article  CAS  Google Scholar 

  25. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

    Google Scholar 

  26. Poudel, B. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  27. Harman, T. C., Taylor, P. J., Walsh, M. P. & LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 297, 2229–2232 (2002).

    Article  CAS  Google Scholar 

  28. Coppens, Z. J., Wei, L., Walker, D. G. & Valentine, J. G. Probing and controlling photothermal heat generation in plasmonic nanostructures. Nano Lett. 13, 1023–1028 (2013).

    Article  CAS  Google Scholar 

  29. Alaee, R., Farhat, M., Rockstuhl, C. & Lederer, F. A perfect absorber made of a graphene micro-ribbon metamaterial. Opt. Express 20, 28017–28024 (2012).

    Article  CAS  Google Scholar 

  30. Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).

    Article  Google Scholar 

  31. Chen, K., Adato, R. & Altug, H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 6, 7998–8006 (2012).

    Article  CAS  Google Scholar 

  32. Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    Article  CAS  Google Scholar 

  33. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (202008).

  34. FDTD Solutions (Lumerical); http://www.lumerical.com/tcad-products/fdtd/

  35. COMSOL Multiphysics v. 5.2 (COMSOL AB); http://www.comsol.com

  36. Moharam, M. G., Grann, E. B., Pommet, D. A. & Gaylord, T. K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068–1076 (1995).

    Article  Google Scholar 

  37. Singh, R. & Shakouri, A. Thermostat for high temperature and transient characterization of thin film thermoelectric materials. Rev. Sci. Instrum. 80, 025101 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the US Department of Energy (DOE) Office of Science grant DE-FG02-07ER46405. S.K. acknowledges support by a Samsung Scholarship. The authors thank M. Jones for discussions.

Author information

Authors and Affiliations

Authors

Contributions

K.W.M. and H.A.A. conceived the ideas. K.W.M. and S.K. performed the simulations. K.W.M. fabricated the samples. K.W.M. built the measurement set-ups specific to this study. K.W.M., S.M. and D.F. performed measurements, and K.W.M., S.K. and S.M. performed data analysis. K.S. contributed to the design and analysis of noise measurements. R.P. built a general-use measurement set-up and provided assistance with part of one supplementary measurement. K.W.M., H.A.A. and S.M. co-wrote the paper. All authors discussed the results and commented on the manuscript, and H.A.A. supervised the project.

Corresponding author

Correspondence to Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauser, K., Kim, S., Mitrovic, S. et al. Resonant thermoelectric nanophotonics. Nature Nanotech 12, 770–775 (2017). https://doi.org/10.1038/nnano.2017.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing