Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices

Abstract

We have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells. We find that the triggering properties of pMHC–NPs are a function of pMHC intermolecular distance and involve the sustained assembly of large antigen receptor microclusters on murine and human cognate T cells. These compounds show no off-target toxicity in zebrafish embryos, do not cause haematological, biochemical or histological abnormalities, and are rapidly captured by phagocytes or processed by the hepatobiliary system. This work lays the groundwork for the design of ligand-based NP formulations to re-program in vivo cellular responses using nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biophysical characterization of pMHC–PF.
Figure 2: Effects of NP size and pMHC valency on T-cell agonistic activity and TCR signalling.
Figure 3: Autoregulatory T-cell expansion properties of BDC2.5mi/IAg7-PF-M in vivo versus pMHC valency/density and dose.
Figure 4: Sustained binding and clustering of pMHC–NPs on cognate T cells as a function of pMHC density, and sterile internalization by macrophages or DCs.
Figure 5: Binding to, and agonistic properties of human autoimmune disease-relevant pMHC–NPs on human cognate TR1-like/poised CD4+ T-cell clones.
Figure 6: Pharmacokinetics and toxicology of pMHC class II–PF-Ms in NOD mice.

Similar content being viewed by others

References

  1. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  CAS  Google Scholar 

  2. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  Google Scholar 

  3. Clemente-Casares, X., Tsai, S., Yang, Y. & Santamaria, P. Peptide-MHC-based nanovaccines for the treatment of autoimmunity: a “one size fits all” approach? J. Mol. Med. 89, 733–742 (2011).

    Article  CAS  Google Scholar 

  4. McLarnon, A. IBD: regulatory T-cell therapy is a safe and well-tolerated potential approach for treating refractory Crohn's disease. Nat. Rev. Gastroenterol. Hepatol. 9, 509–516 (2012).

    Google Scholar 

  5. Desreumaux, P. et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology 143, 1207–1217 (2012).

    Article  CAS  Google Scholar 

  6. Xie, J. et al. One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem. 78, 1003–1014 (2006).

    Article  CAS  Google Scholar 

  7. Rojo, J. M. & Portoles, P. A symmetrical view of the T-cell receptor-CD3 complex. Immunol. Today 12, 377–378 (1991).

    Article  CAS  Google Scholar 

  8. Fernandez-Miguel, G. et al. Multivalent structure of an αβT cell receptor. Proc. Natl Acad. Sci. USA 96, 1547–1552 (1996).

    Article  Google Scholar 

  9. Arechaga, I. et al. Structural characterization of the TCR complex by electron microscopy. Int. Immunol. 22, 897–903 (2010).

    Article  CAS  Google Scholar 

  10. Scholten, K. B. et al. Preservation and redirection of HPV16E7-specific T cell receptors for immunotherapy of cervical cancer. Clin. Immunol. 114, 119–129 (2005).

    Article  CAS  Google Scholar 

  11. Schamel, W. W. & Alarcon, B. Organization of the resting TCR in nanoscale oligomers. Immunol. Rev. 251, 13–20 (2013).

    Article  Google Scholar 

  12. Lillemeier, B. F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  Google Scholar 

  13. Zhong, L. et al. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation. PLoS ONE 4, e5945 (2009).

    Article  Google Scholar 

  14. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  15. Choudhuri, K. & Dustin, M. L. Signaling microdomains in T cells. FEBS Lett. 584, 4823–4831 (2010).

    Article  CAS  Google Scholar 

  16. Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).

    Article  CAS  Google Scholar 

  17. Weisser, S. B., van Rooijen, N. & Sly, L. M. Depletion and reconstitution of macrophages in mice. J. Vis. Exp. 66, e4105 (2012).

    Google Scholar 

  18. Gagliani, N. et al. Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 19, 739–746 (2013).

    Article  CAS  Google Scholar 

  19. Roncarolo, M. G., Gregori, S., Bacchetta, R. & Battaglia, M. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr. Top Microbiol. Immunol. 380, 39–68 (2014).

    CAS  Google Scholar 

  20. Gu, L., Fang, R. H., Sailor, M. J. & Park, J. H. In vivo clearance and toxicity of monodisperse iron oxide nanocrystals. ACS Nano 6, 4947–4954 (2012).

    Article  CAS  Google Scholar 

  21. Kolosnjaj-Tabi, J. et al. The one year fate of iron oxide coated gold nanoparticles in mice. ACS Nano 9, 7925–7939 (2015).

    Article  CAS  Google Scholar 

  22. Chou, L. Y., Zagorovsky, K. & Chan, W. C. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotech. 9, 148–155 (2014).

    Article  CAS  Google Scholar 

  23. Alexis, F., Pridgen, E., Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008).

    Article  CAS  Google Scholar 

  24. Borchard, G. & Kreuter, J. The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement. Pharm. Res. 13, 1055–1058 (1996).

    Article  CAS  Google Scholar 

  25. Armstrong, T. I., Davies, M. C. & Illum, L. Human serum albumin as a probe for protein adsorption to nanoparticles: relevance to biodistribution. J. Drug Target 4, 389–398 (1997).

    Article  CAS  Google Scholar 

  26. Roohi, F., Lohrke, J., Ide, A., Schutz, G. & Dassler, K. Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles. Int. J. Nanomed. 7, 4447–4458 (2012).

    CAS  Google Scholar 

  27. Bourrinet, P. et al. Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest. Radiol. 41, 313–324 (2006).

    Article  CAS  Google Scholar 

  28. Varallyay, P. et al. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am. J. Neuroradiol. 23, 510–519 (2002).

    Google Scholar 

  29. Scholer, N. et al. Effect of solid lipid nanoparticles (SLN) on cytokine production and the viability of murine peritoneal macrophages. J. Microencapsul. 17, 639–650 (2000).

    Article  CAS  Google Scholar 

  30. Scholer, N., Hahn, H., Muller, R. H. & Liesenfeld, O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int. J. Pharm. 231, 167–176 (2002).

    Article  CAS  Google Scholar 

  31. Fifis, T. et al. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004).

    Article  CAS  Google Scholar 

  32. Shvedova, A. A. et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, L698–L708 (2005).

    Article  Google Scholar 

  33. Vallhov, H. et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 6, 1682–1686 (2006).

    Article  CAS  Google Scholar 

  34. Mottram, P. L. et al. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4, 73–84 (2007).

    Article  CAS  Google Scholar 

  35. Huppa, J. B. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    Article  CAS  Google Scholar 

  36. Bunnell, S. C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  Google Scholar 

  37. Gil, D., Schamel, W. W., Montoya, M., Sanchez-Madrid, F. & Alarcon, B. Recruitment of Nck by CD3ɛ reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901–912 (2002).

    Article  CAS  Google Scholar 

  38. Minguet, S., Swamy, M., Alarcon, B., Luescher, I. F. & Schamel, W. W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    Article  CAS  Google Scholar 

  39. Martinez-Martin, N. et al. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3ɛ. Sci. Signal. 2, ra43 (2009).

    Article  Google Scholar 

  40. McKeithan, T. W. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  Google Scholar 

  41. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide–MHC complexes. Nature 375, 148–151 (1995).

    Article  CAS  Google Scholar 

  42. Katz, J. D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).

    Article  CAS  Google Scholar 

  43. Verdaguer, J. et al. Spontaneous autoimmune diabetes in monoclonal T cell nonobese diabetic mice. J. Exp. Med. 186, 1663–1676 (1997).

    Article  CAS  Google Scholar 

  44. Han, B. et al. Developmental control of CD8+ T cell-avidity maturation in autoimmune diabetes. J. Clin. Invest. 115, 1879–1887 (2005).

    Article  CAS  Google Scholar 

  45. Garboczi, D. N., Hung, D. T. & Wiley, D. C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA 89, 3429–3433 (1992).

    Article  CAS  Google Scholar 

  46. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  Google Scholar 

  47. Yu, Y. Y., Netuschil, N., Lybarger, L., Connolly, J. M. & Hansen, T. H. Cutting edge: single-chain trimers of MHC class I molecules form stable structures that potently stimulate antigen-specific T cells and B cells. J. Immunol. 168, 3145–3149 (2002).

    Article  CAS  Google Scholar 

  48. Holst, J. et al. Generation of T-cell receptor retrogenic mice. Nat. Protoc. 1, 406–417 (2006).

    Article  CAS  Google Scholar 

  49. Amrani, A. et al. Progression of autoimmune diabetes driven by avidity maturation of a T-cell population. Nature 406, 739–742 (2000).

    Article  CAS  Google Scholar 

  50. Stratmann, T. et al. The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J. Immunol. 165, 3214–3225 (2000).

    Article  CAS  Google Scholar 

  51. Perrault, S. D., Walkey, C., Jennings, T., Fischer, H. C. & Chan, W. C. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9, 1909–1915 (2009).

    Article  CAS  Google Scholar 

  52. Xie, J., Xu, C., Kohler, N., Hou, Y. & Sun, S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv. Mater. 19, 3163–3166 (2007).

    Article  CAS  Google Scholar 

  53. Xu, C. & Sun, S. Monodisperse magnetic nanoparticles for biomedical applications. Polym. Int. 56, 821–826 (2007).

    Article  CAS  Google Scholar 

  54. Afonin, K. A. et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat. Protoc. 6, 2022–2034 (2011).

    Article  CAS  Google Scholar 

  55. Li, Y. & Boraschi, D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine 11, 269–287 (2016).

    Article  CAS  Google Scholar 

  56. Nikolic, T., Geutskens, S. B., van Rooijen, N., Drexhage, H. A. & Leenen, P. J. Dendritic cells and macrophages are essential for the retention of lymphocytes in (peri)-insulitis of the nonobese diabetic mouse: a phagocyte depletion study. Lab. Invest. 85, 487–501 (2005).

    Article  Google Scholar 

  57. Calderon, B., Suri, A. & Unanue, E. R. CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet β-cell killing: studies from an acute model. Am. J. Pathol. 169, 2137–2147 (2006).

    Article  CAS  Google Scholar 

  58. Mandrell, D. et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J. Lab. Autom. 17, 66–74 (2012).

    Article  Google Scholar 

  59. Truong, L., Harper, S. L. & Tanguay, R. L. Evaluation of embryotoxicity using the zebrafish model. Methods Mol. Biol. 691, 271–279 (2011).

    Article  CAS  Google Scholar 

  60. Truong, L. et al. Multidimensional in vivo hazard assessment using zebrafish. Toxicol. Sci. 137, 212–233 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Thiessen, J. Erickson and J. Luces for technical assistance, and L. Kennedy for flow cytometry. We acknowledge T. DiLorenzo for providing JurMA cells, H. Benediktsson for structural analyses of kidney TEM, R. Interior for amino acid analysis, W. White and D. Cramb for assistance with GD-mass spectrometry, FTIR and DLS, T. Furstenhaupt and W. Dong for SEBD and TEM, J.M. Rebled, A. Garcia, R. Rivera and A. Martínez from the TEM–SEM unit from the University of Barcelona (CCiT-UB) for TEM analyses of human T-cell clone:pMHC–NP conjugates, and the CMHD Unit at the Lunenfeld–Tanenbaum Institute for haematology and biochemistry. This work was funded by the Collaborative Health Research Program of the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada, the Instituto de Investigaciones Sanitarias Carlos III, the Ministerio de Economia y Competitividad of Spain (MINECO), and the Sardà Farriol Research Programme. X.C.C. was supported by studentships from the AXA Research Fund and the endMS network. K.S. is funded by Eyes’ High/Alberta Innovates-Technology Futures, Alberta Innovates–Health Solutions (AI-HS) and Banting-CIHR fellowships. C.S.U. is supported by AI-HS and Banting-CIHR fellowhips. R.H.N. is supported by studentships from AI-HS and CIHR. S.W.L. was partially supported by a studentship from Fonds de Recherche du Quebec - Nature et Technologies. J.B. was supported by a Rio Hortega fellowship from the Ministry of Economy and Competitiveness of Spain and by a fellowship from the European Association for the Study of Diabetes (EASD). P.Serra is a Ramon y Cajal investigator supported by a Juvenile Diabetes Research Foundation Career Development Award. P.Santamaria is Scientist of the Alberta Innovates-Health Solutions and a scholar of the IISCIII. The JMDRC is supported by the Canadian Diabetes Association (CDA).

Author information

Authors and Affiliations

Authors

Contributions

S.S. and Y.Y. developed and produced all the pMHC–NPs, and data for Figs 1, 2a–j, 4a–c, 4e–g and Supplementary Figs 1, 4d–f,g, 5a and 7b, in collaboration with K.S.; K.S. produced data for Figs 2l, 4d, and Supplementary Figs 4a–c and 8. X.C. produced data for Figs 3e–h and 4i and Supplementary Figs 3 and 7a, in collaboration with J.Y.; P. Solé produced the JurMA TCR/mCDA transfectants and produced the data for Fig. 2k. J.Y. produced the data for Supplementary Fig. 4c. C.S.U. and R.H.N. produced murine pMHCs for this study. C.F. purified human pMHCs. J.B., A.C. and P. Serra produced data for Fig. 5. Q.D., F.S. and W.C.W.C. produced data for Fig. 6 and Supplementary Fig. 5. S.W.L. and A.K. generated all the mathematical models and produced Fig. 3a–d and Supplementary Figs 9 and 10. P.D. and M.A. contributed expertise in confocal microscopy and SEM. R.T. generated the zebrafish embryo toxicology data for Supplementary Fig. 6. S.N. carried out the multi-organ histopathology. P. Santamaria designed and supervised the study and wrote the manuscript with the assistance of S.S.

Corresponding authors

Correspondence to Yang Yang or Pere Santamaria.

Ethics declarations

Competing interests

P. Santamaria is scientific founder of Parvus Therapeutics Inc. and has a financial interest in the company.

Supplementary information

Supplementary information

Supplementary information (PDF 4280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singha, S., Shao, K., Yang, Y. et al. Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nature Nanotech 12, 701–710 (2017). https://doi.org/10.1038/nnano.2017.56

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.56

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research