Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heat transport through atomic contacts

Abstract

Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits1. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems2. Whereas charge transport in atomic junctions has been studied intensively in the past two decades2,3,4,5, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta6. This constitutes a verification of the Wiedemann–Franz law at the atomic scale7.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the measurement technique.
Figure 2: Thermal and electrical conductance of a gold–gold contact during the breaking process.
Figure 3: 2D histogram of thermal versus electrical conductance with respective projections onto 1D histograms.
Figure 4: Comparison between the experimental findings and the theoretical prediction.

Similar content being viewed by others

References

  1. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 3, 147–169 (2010).

    Article  CAS  Google Scholar 

  2. Agraït, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  Google Scholar 

  3. Yanson, A. I., Bollinger, G. R., van den Brom, H. E., Agraït, N. & van Ruitenbeek, J. M. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    Article  CAS  Google Scholar 

  4. Muller, C. J., Krans, J. M., Todorov, T. N. & Reed, M. A. Quantization effects in the conductance of metallic contacts at room temperature. Phys. Rev. B 53, 1022–1025 (1996).

    Article  CAS  Google Scholar 

  5. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  6. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  CAS  Google Scholar 

  7. Franz, R. & Wiedemann, G. Ueber die Wärme-Leitungsfähigkeit der metalle. Ann. Phys. 165, 497–531 (1853).

    Article  Google Scholar 

  8. Lee, W. et al. Heat dissipation in atomic-scale junctions. Nature 498, 209–212 (2013).

    Article  CAS  Google Scholar 

  9. Tsutsui, M., Kawai, T. & Taniguchi, M. Unsymmetrical hot electron heating in quasi-ballistic nanocontacts. Sci. Rep. 2, 217 (2012).

    Article  Google Scholar 

  10. Evangeli, C. et al. Quantum thermopower of metallic atomic-size contacts at room temperature. Nano Lett. 15, 1006–1011 (2015).

    Article  CAS  Google Scholar 

  11. Tsutsui, M., Morikawa, T., Arima, A. & Taniguchi, M. Thermoelectricity in atom-sized junctions at room temperatures. Sci. Rep. 3, 3326 (2013).

    Article  Google Scholar 

  12. Butcher, P. N. Thermal and electrical transport formalism for electronic microstructures with many terminals. J. Phys. Condens. Matter 2, 4869–4878 (1990).

    Article  Google Scholar 

  13. Ashcroft, N. W. & Mermin, N. Solid State Physics (Saunders College, 1976).

    Google Scholar 

  14. Zhang, Q. G., Cao, B. Y., Zhang, X., Fujii, M. & Takahashi, K. Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms. Phys. Rev. B 74, 134109 (2006).

    Article  Google Scholar 

  15. Ou, M. N., Yang, T. J., Harutyunyan, S. R., Chen, Y. Y. & Chen, C. D. Electrical and thermal transport in single nickel nanowire. Appl. Phys. Lett. 92, 063101 (2008).

    Article  Google Scholar 

  16. Cheng, Z., Liu, L., Xu, S., Lu, M. & Wang, X. Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci. Rep. 5, 10718 (2015).

    Article  CAS  Google Scholar 

  17. Völklein, F., Reith, H., Cornelius, T. W., Rauber, M. & Neumann, R. The experimental investigation of thermal conductivity and the Wiedemann–Franz law for single metallic nanowires. Nanotechnology 20, 325706 (2009).

    Article  Google Scholar 

  18. Avery, A. D., Mason, S. J., Bassett, D., Wesenberg, D. & Zink, B. L. Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann–Franz Law. Phys. Rev. B 92, 1–10 (2015).

    Article  Google Scholar 

  19. Wakeham, N. et al. Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor. Nat. Commun. 2, 396 (2011).

    Article  Google Scholar 

  20. Blumenstein, C. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nat. Phys. 7, 776–780 (2011).

    Article  CAS  Google Scholar 

  21. Chiatti, O. et al. Quantum thermal conductance of electrons in a one-dimensional wire. Phys. Rev. Lett. 97, 1314 (2006).

    Article  Google Scholar 

  22. Molenkamp, L. W., Gravier, T., van Houten, H., Buijk, O. J. A. & Mabesoone, M. A. A. Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett. 68, 3765–3768 (1992).

    Article  CAS  Google Scholar 

  23. Lörtscher, E., Widmer, D. & Gotsmann, B. Next-generation nanotechnology laboratories with simultaneous reduction of all relevant disturbances. Nanoscale 5, 10542 (2013).

    Article  Google Scholar 

  24. Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993).

    Article  CAS  Google Scholar 

  25. Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    Article  CAS  Google Scholar 

  26. Kittel, A. et al. Near-field heat transfer in a scanning thermal microscope. Phys. Rev. Lett. 95, 1–4 (2005).

    Article  Google Scholar 

  27. Den Boer, D. et al. Electron transport through CO studied by gold break-junctions in nonpolar liquids. J. Phys. Chem. C 113, 15412–15416 (2009).

    Article  CAS  Google Scholar 

  28. Balogh, Z., Makk, P. & Halbritter, A. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions. Beilstein J. Nanotechnol. 6, 1369–1376 (2015).

    Article  CAS  Google Scholar 

  29. Kiguchi, M., Djukic, D. & van Ruitenbeek, J. M. The effect of bonding of a CO molecule on the conductance of atomic metal wires. Nanotechnology 18, 35205 (2007).

    Article  CAS  Google Scholar 

  30. Gotsmann, B. & Lantz, M. A. Quantized thermal transport across contacts of rough surfaces. Nat. Mater. 12, 59–65 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding by the European Commission FP7 ITN ‘MOLESCO’ Project No. 606728. We thank J. Repp, K. Moselund and W. Riess for management support of the project. We acknowledge technical support from M. Tschudy, H. Wolf, E. Lörtscher, S. Reidt, A. Olziersky, G. Meyer and C. Bolliger. We thank C. Lambert, H. Sadeghi, G. Signorello, F. Motzfeld, J. Gooth and all the MOLESCO partners for fruitful discussions concerning this work. This work is dedicated to the MOLESCO partner T. Wandlowski.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and N.M. conceived the experiment. N.M. performed the measurements with the help of P.N., S.K., F.M. and B.G. The MEMS devices were fabricated by U.D. The experiment was designed by B.G., N.M. and F.M. N.M. and B.G. performed the data analysis and wrote the manuscript with contributions by all the authors. All the authors discussed the results.

Corresponding authors

Correspondence to Nico Mosso or Bernd Gotsmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 883 kb)

Supplementary information

Supplementary information (XLSX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosso, N., Drechsler, U., Menges, F. et al. Heat transport through atomic contacts. Nature Nanotech 12, 430–433 (2017). https://doi.org/10.1038/nnano.2016.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing