Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

Abstract

Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression1. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients2,3, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity4 allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intraneuronal transport monitoring by FND tracking.
Figure 2: Transport parameter quantification for anterograde and retrograde motion in axons of neurons grown in a microfluidic chamber.
Figure 3: Effect of nocodazole and Alzheimer's disease-related amyloid-β1–42 oligomers on intraneuronal transport.
Figure 4: Sensitivity of the FND tracking assay to slight concentration changes in the autism-related Mark1 protein.
Figure 5: Sensitivity of the FND tracking assay to the slight overexpression of autism-related Slc25a12.

Similar content being viewed by others

References

  1. McClellan, J. & King, M.-C. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    Article  CAS  Google Scholar 

  2. Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610–638 (2010).

    Article  CAS  Google Scholar 

  3. Millecamps, S. & Julien, J.-P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).

    Article  CAS  Google Scholar 

  4. Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond nanoscale: sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    Article  CAS  Google Scholar 

  5. de Angelis, M. H. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015).

    Article  Google Scholar 

  6. Kwinter, D. M., Lo, K., Mafi, P. & Silverman, M. A. Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 162, 1001–1010 (2009).

    Article  CAS  Google Scholar 

  7. Pinaud, F., Clarke, S., Sittner, A. & Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 7, 275–285 (2010).

    Article  CAS  Google Scholar 

  8. Mudrakola, H. V., Zhang, K. & Cui, B. Optically resolving individual microtubules in live axons. Structure 17, 1433–1441 (2009).

    Article  CAS  Google Scholar 

  9. Chang, Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotech. 3, 284–288 (2008).

    Article  CAS  Google Scholar 

  10. Wu, T. et al. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nanotech. 8, 682–689 (2013).

    Article  CAS  Google Scholar 

  11. Huang, Y.-A. et al. The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. Sci. Rep. 4, 6919 (2014).

    Article  CAS  Google Scholar 

  12. Blanpied, T., Scott, D. & Ehlers, M. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449 (2002).

    Article  CAS  Google Scholar 

  13. Overly, C. C., Rieff, H. I. & Hollenbeck, P. J. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J. Cell Sci. 109, 971–980 (1996).

    CAS  Google Scholar 

  14. Rodriguez-Boulan, E., Kreitzer, G. & Müsch, A. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

  15. Chen, J., Kanai, Y., Cowan, N. J. & Hirokawa, N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360, 674–676 (1992).

    Article  CAS  Google Scholar 

  16. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6, 1491–1495 (2006).

    Article  CAS  Google Scholar 

  17. Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282–1288 (2005).

    Article  CAS  Google Scholar 

  18. Encalada, S. E. & Goldstein, L. S. B. Biophysical challenges to axonal transport motor-cargo deficiencies and neurodegeneration. Annu. Rev. Biophys. 43, 141–169 (2014).

    Article  CAS  Google Scholar 

  19. Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article  CAS  Google Scholar 

  20. Vossel, K. A. et al. Tau reduction prevents Aβ-induced defects in axonal transport. Science 330, 198 (2010).

    Article  CAS  Google Scholar 

  21. Maussion, G. et al. Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Hum. Mol. Genet. 17, 2541–2551 (2008).

    Article  CAS  Google Scholar 

  22. Lepagnol-Bestel, A. M. et al. SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol. Psychiatry 13, 385–397 (2008).

    Article  CAS  Google Scholar 

  23. Lakadamyali, M. Navigating the cell how motors overcome roadblocks and traffic jams to efficiently transport cargo. Phys. Chem. Chem. Phys. 16, 5907–5916 (2014).

    Article  CAS  Google Scholar 

  24. Mandelkow, E.-M., Thies, E., Trinczek, B., Biernat, J. & Mandelkow, E. MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J. Cell Biol. 167, 99–110 (2004).

    Article  CAS  Google Scholar 

  25. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179–184 (2014).

    Article  CAS  Google Scholar 

  26. Palmieri, L. et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol. Psychiatry 15, 38–52 (2010).

    Article  CAS  Google Scholar 

  27. Nakamura, H. et al. Quantitative analysis of intraneuronal transport in human iPS neurons. J. Pharmacol. Sci. 128, 170–178 (2015).

    Article  CAS  Google Scholar 

  28. Mayer, L. et al. Single KTP nanocrystals as second-harmonic generation biolabels in cortical neurons. Nanoscale 5, 8466–8471 (2013).

    Article  CAS  Google Scholar 

  29. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

    Article  Google Scholar 

  30. Choi, S. H. et al. A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274–278 (2014).

    Article  CAS  Google Scholar 

  31. Paşca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    Article  Google Scholar 

  32. Su, L.-J. et al. Creation of high density ensembles of nitrogen–vacancy centers in nitrogen-rich type Ib nanodiamonds. Nanotechnology 24, 315702 (2013).

    Article  Google Scholar 

  33. Chenouard, N., Bloch, I. & Olivo-Marin, J. C. Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2736–2750 (2013).

    Article  Google Scholar 

  34. Klein, W. L. Aβ toxicity in Alzheimer's disease globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. 41, 345–352 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Tchénio for his comments on the manuscript, A. Lombard for his contribution to data processing and J. Lipecka for her help with western blotting. This work was supported by a public grant overseen by the French National research Agency (ANR) as part of the Investissement d'Avenir programme IDEX Paris-Saclay ANR-11-IDEX- 0003-02 (S.H.); the ANR and the Ministry of Science and Technology (Taiwan) through grant ANR-2010-INTB-1002 (M.S., F.T., H.-C.C. and C.-C.W.); the ANR through the Eranet Euronanomed project 2011-ERNA-006 (F.T., M.S., C.S. and A.C.); the Fondation Jérôme Lejeune (M.S.), the European Union FP7-Health (Grant Agreement n° 305299) AgedBrainSysBio grant (M.S.); grant number 12018592 from Region Ile-de-France (F.T.); CNRS Programme Interdisciplinaire (F.T. and M.S.) and Triangle de la Physique contract no. 2012-038T (F.T. and M.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.H., F.T. and M.S. conceived and designed the experiments. S.H., N.M., Y.L.-M., A.-M.L.-B., M.-P.A., S.M., X.L.L., J.V., C.P., E.D., C.R. and R.D. performed the experiments. S.H., N.M., S.M., M.-P.A. and X.L.L. analysed the data. P.K., F.-J.H., C.-C.W., B.P., Y.H., C.S., A.C., B.A. and H.-C.C. contributed to materials and analysis tools. S.H., F.T. and M.S. wrote the paper.

Corresponding authors

Correspondence to Simon Haziza, François Treussart or Michel Simonneau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3652 kb)

Supplementary information

Supplementary Movie 1 (MP4 1290 kb)

Supplementary information

Supplementary Movie 2 (MP4 5162 kb)

Supplementary information

Supplementary Movie 3 (MP4 2743 kb)

Supplementary information

Supplementary Movie 4 (MP4 2158 kb)

Supplementary information

Supplementary Movie 5 (MP4 11839 kb)

Supplementary information

Supplementary Movie 6 (MP4 915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haziza, S., Mohan, N., Loe-Mie, Y. et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nature Nanotech 12, 322–328 (2017). https://doi.org/10.1038/nnano.2016.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing