Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microscopic agents programmed by DNA circuits

Abstract

Information stored in synthetic nucleic acids sequences can be used in vitro to create complex reaction networks with precisely programmed chemical dynamics. Here, we scale up this approach to program networks of microscopic particles (agents) dispersed in an enzymatic solution. Agents may possess multiple stable states, thus maintaining a memory and communicate by emitting various orthogonal chemical signals, while also sensing the behaviour of neighbouring agents. Using this approach, we can produce collective behaviours involving thousands of agents, for example retrieving information over long distances or creating spatial patterns. Our systems recapitulate some fundamental mechanisms of distributed decision making and morphogenesis among living organisms and could find applications in cases where many individual clues need to be combined to reach a decision, for example in molecular diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Programming microscopic agents using DNA-encoded reaction rules.
Figure 2: Positive feedback loop-encoded agents.
Figure 3: Travelling front propagation across a population of bistable agents (PαB).
Figure 4: ‘Go-fetch’ program using four agent populations.
Figure 5: Mixed populations of symbiotic particles.
Figure 6: Cooperative mechanism in symbiotic clusters.

Similar content being viewed by others

References

  1. Padirac, A., Fujii, T. & Rondelez, Y. Nucleic acids for the rational design of reaction circuits. Curr. Opin. Biotechnol. 24, 575–580 (2013).

    Article  CAS  Google Scholar 

  2. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  3. Han, D. et al. A cascade reaction network mimicking the basic functional steps of adaptive immune response. Nat. Chem. 7, 835–841 (2015).

    Article  CAS  Google Scholar 

  4. Chen, Y.-J. et al. Programmable chemical controllers made from DNA. Nat. Nanotech. 8, 755–762 (2013).

    Article  CAS  Google Scholar 

  5. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    Article  Google Scholar 

  6. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    Article  Google Scholar 

  7. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

    Article  Google Scholar 

  8. Padirac, A., Fujii, T. & Rondelez, Y. Bottom-up construction of in vitro switchable memories. Proc. Natl Acad. Sci. USA 109, E3212–E3220 (2012).

    Article  CAS  Google Scholar 

  9. Scalise, D. & Schulman, R. Designing modular reaction-diffusion programs for complex pattern formation. Technology 2, 55–66 (2014).

    Article  Google Scholar 

  10. Zadorin, A. S., Rondelez, Y., Galas, J.-C. & Estevez-Torres, A. Synthesis of programmable reaction–diffusion fronts using DNA catalyzers. Phys. Rev. Lett. 114, 068301 (2015).

    Article  CAS  Google Scholar 

  11. Padirac, A., Fujii, T., Estévez-Torres, A. & Rondelez, Y. Spatial waves in synthetic biochemical networks. J. Am. Chem. Soc. 135, 14586–14592 (2013).

    Article  CAS  Google Scholar 

  12. Zambrano, A., Zadorin, A. S., Rondelez, Y., Estevez-Torres, A. & Galas, J.-C. Pursuit-and-evasion reaction–diffusion waves in micro-reactors with tailored geometry. J. Phys. Chem. B 119, 5349–5355 (2015).

    Article  CAS  Google Scholar 

  13. Miller, M. B. & Bassler, B. L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    Article  CAS  Google Scholar 

  14. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  Google Scholar 

  15. Pourquié, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    Article  Google Scholar 

  16. Baker, R. E., Schnell, S. & Maini, P. K. A clock and wavefront mechanism for somite formation. Dev. Biol. 293, 116–126 (2006).

    Article  CAS  Google Scholar 

  17. Kessin, R. H. Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  18. Baccouche, A., Montagne, K., Padirac, A., Fujii, T. & Rondelez, Y. Dynamic DNA-toolbox reaction circuits: a walkthrough. Methods 67, 234–249 (2014).

    Article  CAS  Google Scholar 

  19. Yashin, V. V., Kolmakov, G. V., Shum, H. & Balazs, A. C . Designing synthetic microcapsules that undergo biomimetic communication and autonomous motion. Langmuir 31, 11951–11963 (2015).

    Article  CAS  Google Scholar 

  20. Taylor, A. F., Tinsley, M. R. & Showalter, K . Insights into collective cell behaviour from populations of coupled chemical oscillators. Phys. Chem. Chem. Phys. 17, 20047–20055 (2015).

    Article  CAS  Google Scholar 

  21. Yashin, R., Rudchenko, S. & Stojanovic, M. N. Networking particles over distance using oligonucleotide-based devices. J. Am. Chem. Soc. 129, 15581–15584 (2007).

    Article  CAS  Google Scholar 

  22. Jung, C., Allen, P. B. & Ellington, A. D. A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotech. 11, 157–163 (2016).

    Article  CAS  Google Scholar 

  23. Soh, S., Byrska, M., Kandere-Grzybowska, K. & Grzybowski, B. A. Reaction–diffusion systems in intracellular molecular transport and control. Angew. Chem. Int. Ed. 49, 4170–4198 (2010).

    Article  CAS  Google Scholar 

  24. Tan, E. et al. Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry 47, 9987–9999 (2008).

    Article  CAS  Google Scholar 

  25. Montagne, K., Gines, G., Fujii, T. & Rondelez, Y. Boosting functionality of synthetic DNA circuits with tailored deactivation. Nat. Commun. 7, 13474 (2016).

    Article  CAS  Google Scholar 

  26. Davis, R. M., Muller, R. Y. & Haynes, K. A . Can the natural diversity of quorum-sensing advance synthetic biology? Front. Bioeng. Biotechnol. 3, 30 (2015).

    Google Scholar 

  27. Genot, A. J., Fujii, T. & Rondelez, Y. Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface 10, 20130212 (2013).

    Article  Google Scholar 

  28. Rondelez, Y. Competition for catalytic resources alters biological network dynamics. Phys. Rev. Lett. 108, 018102 (2012).

    Article  Google Scholar 

  29. Youk, H. & Lim, W. A. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 343, 1242782 (2014).

    Article  Google Scholar 

  30. Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. Science 322, 390–395 (2008).

    Article  CAS  Google Scholar 

  31. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134 (2003).

    Article  CAS  Google Scholar 

  32. Dauty, E. & Verkman, A. S. Molecular crowding reduces to a similar extent the diffusion of small solutes and macromolecules: measurement by fluorescence correlation spectroscopy. J. Mol. Recognit. 17, 441–447 (2004).

    Article  CAS  Google Scholar 

  33. Teichmann, M., Kopperger, E. & Simmel, F. C . Robustness of localized DNA strand displacement cascades. ACS Nano 8, 8487–8496 (2014).

    Article  CAS  Google Scholar 

  34. Hasatani, K. et al. High-throughput and long-term observation of compartmentalized biochemical oscillators. Chem. Commun. 49, 8090–8092 (2013).

    Article  CAS  Google Scholar 

  35. Toiya, M., González-Ochoa, H. O., Vanag, V. K., Fraden, S. & Epstein, I. R. Synchronization of chemical micro-oscillators. J. Phys. Chem. Lett. 1, 1241–1246 (2010).

    Article  CAS  Google Scholar 

  36. Tayar, A. M., Karzbrun, E., Noireaux, V. & Bar-Ziv, R. H. Propagating gene expression fronts in a one-dimensional coupled system of artificial cells. Nat. Phys. 11, 1037–1041 (2015).

    Article  CAS  Google Scholar 

  37. Dewey, D. C., Strulson, C. A., Cacace, D. N., Bevilacqua, P. C. & Keating, C. D. Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nat. Commun. 5, 4670 (2014).

    Article  CAS  Google Scholar 

  38. Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    Article  CAS  Google Scholar 

  39. Weitz, M. et al. Communication and computation by bacteria compartmentalized within microemulsion droplets. J. Am. Chem. Soc. 136, 72–75 (2014).

    Article  CAS  Google Scholar 

  40. Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol. 6, 350 (2010).

    Article  Google Scholar 

  41. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  Google Scholar 

  42. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    Article  CAS  Google Scholar 

  43. Amemiya, T. et al. Collective and individual glycolytic oscillations in yeast cells encapsulated in alginate microparticles. Chaos 25, 064606 (2015).

    Article  Google Scholar 

  44. Kim, K. T., Cornelissen, J. J. L. M., Nolte, R. J. M. & van Hest, J. C. M. A polymersome nanoreactor with controllable permeability induced by stimuli-responsive block copolymers. Adv. Mater. 21, 2787–2791 (2009).

    Article  CAS  Google Scholar 

  45. Tinsley, M. R., Taylor, A. F., Huang, Z. & Showalter, K. Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing. Phys. Rev. Lett. 102, 158301 (2009).

    Article  Google Scholar 

  46. Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z. & Showalter, K. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science 323, 614–617 (2009).

    Article  CAS  Google Scholar 

  47. Golestanian, R. Collective behavior of thermally active colloids. Phys. Rev. Lett. 108, 38303 (2012).

    Article  Google Scholar 

  48. Aubert, N., Mosca, C., Fujii, T., Hagiya, M. & Rondelez, Y. Computer-assisted design for scaling up systems based on DNA reaction networks. J. R. Soc. Interface 11, 20131167 (2014).

    Article  Google Scholar 

  49. Binder, S. R., Hixson, C. & Glossenger, J. Protein arrays and pattern recognition: new tools to assist in the identification and management of autoimmune disease. Autoimmun. Rev. 5, 234–241 (2006).

    Article  CAS  Google Scholar 

  50. Hsieh, K., Mage, P. L., Csordas, A. T., Eisenstein, M. & Soh, H. T. Simultaneous elimination of carryover contamination and detection of DNA with uracil-DNA-glycosylase-supplemented loop-mediated isothermal amplification (UDG-LAMP). Chem. Commun. 50, 3747–3749 (2014).

    Article  CAS  Google Scholar 

  51. Pang, J., Modlin, J. & Yolken, R. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol. Cell. Probes 6, 251–256 (1992).

    Article  CAS  Google Scholar 

  52. Antipova, V. N., Zheleznaya, L. A. & Zyrina, N. V. Ab initio DNA synthesis by Bst polymerase in the presence of nicking endonucleases Nt.AlwI, Nb.BbvCI, and Nb.BsmI. FEMS Microbiol. Lett. 357, 144–150 (2014).

    CAS  Google Scholar 

  53. Marshall, K. A. & Ellington, A. D. Molecular parasites that evolve longer genomes. J. Mol. Evol. 49, 656–663 (1999).

    Article  CAS  Google Scholar 

  54. Wlotzka, B. & McCaskill, J. S. A molecular predator and its prey: coupled isothermal amplification of nucleic acids. Chem. Biol. 4, 25–33 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the JSPS with a Grant-in-Aid from the JSPS for Scientific Research on Innovative Areas ‘Synthetic Biology for Comprehension of Biomolecular Networks’ (no. 23119001) and an ERC Consolidator grant ‘ProFF’ (no. 647275). G.G. acknowledges financial support from the JSPS Postdoc program and the University Paris Sciences et Lettres. The authors thank N. Bredeche, N. Aubert-Kato and A. Genot for advice and Y. Tauran and A. Baccouche for expressing and purifying the exonuclease.

Author information

Authors and Affiliations

Authors

Contributions

G.G. designed the study, performed experiments, analysed the data and wrote the manuscript. A.S.Z. carried out mathematical analysis, contributed to image analysis and manuscript writing. J.-C.G. and A.E.-T. contributed to the experimental set-up and designed the study. T.F. provided support with the microfluidic platform. Y.R. conceived, designed and supervised the study, analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Y. Rondelez.

Ethics declarations

Competing interests

G.G., Y.R. and T.F. have submitted a patent application related to the results presented in this paper.

Supplementary information

Supplementary information

Supplementary information (PDF 7039 kb)

Supplementary Movie 1

Supplementary Movie 1 (MP4 689 kb)

Supplementary Movie 2

Supplementary Movie 2 (MP4 2326 kb)

Supplementary Movie 3

Supplementary Movie 3 (MP4 5783 kb)

Supplementary Movie 4

Supplementary Movie 4 (MP4 4915 kb)

Supplementary Movie 5

Supplementary Movie 5 (MP4 6787 kb)

Supplementary Movie 6

Supplementary Movie 6 (MP4 3296 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gines, G., Zadorin, A., Galas, JC. et al. Microscopic agents programmed by DNA circuits. Nature Nanotech 12, 351–359 (2017). https://doi.org/10.1038/nnano.2016.299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.299

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research