Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reviving the lithium metal anode for high-energy batteries

Subjects

Abstract

Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li–S and Li–air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opportunities and challenges for Li metal anodes.
Figure 2: Effects of different electrolyte additives.
Figure 3: Interface engineering on Li metal.
Figure 4: Stable hosts for Li metal and guided Li deposition.
Figure 5: Inorganic and polymer solid electrolytes.
Figure 6: Advanced techniques for Li metal characterizations.
Figure 7: Outlook for Li metal battery engineering and full-cell design.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    CAS  Google Scholar 

  3. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  4. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  5. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  6. Nikolić, Z. & Živanovic, Z. in New Generation of Electric Vehicles (ed. Stevic, Z.) Ch. 2 (INTECH Open Access, 2012); http://dx.doi.org/10.5772/51771

    Google Scholar 

  7. Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994).

    CAS  Google Scholar 

  8. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004).

    CAS  Google Scholar 

  9. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems — the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). This work introduces the concept of the solid electrolyte interphase, or SEI.

    Article  CAS  Google Scholar 

  10. Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    CAS  Google Scholar 

  11. Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. Identification of surface films formed on lithium in propylene carbonate solutions. J. Electrochem. Soc. 134, 1611–1620 (1987).

    CAS  Google Scholar 

  12. Aurbach, D., Ein-Ely, Y. & Zaban, A. The surface chemistry of lithium electrodes in alkyl carbonate solutions. J. Electrochem. Soc. 141, L1–L3 (1994).

    CAS  Google Scholar 

  13. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    CAS  Google Scholar 

  14. Fong, R., von Sacken, U. & Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990).

    CAS  Google Scholar 

  15. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Google Scholar 

  16. Cohen, Y. S., Cohen, Y. & Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B 104, 12282–12291 (2000).

    CAS  Google Scholar 

  17. Aurbach, D. et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. J. Electrochem. Soc. 142, 2873–2882 (1995).

    CAS  Google Scholar 

  18. Huff, L. A. et al. Identification of Li-Ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl. Mater. Interfaces 8, 371–380 (2015).

    Google Scholar 

  19. Gofer, Y., Ben-Zion, M. & Aurbach, D. Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163–178 (1992).

    CAS  Google Scholar 

  20. Despić, A. R. & Popov, K. I. in Modern Aspects of Electrochemistry No. 7 (eds Conway, B. E. & Bockris, J. O'M.) 199–313 (Springer, 1972).

    Google Scholar 

  21. Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990).

    CAS  Google Scholar 

  22. Brissot, C., Rosso, M., Chazalviel, J.-N. & Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999).

    Google Scholar 

  23. Rosso, M., Gobron, T., Brissot, C., Chazalviel, J.-N. & Lascaud, S. Onset of dendritic growth in lithium/polymer cells. J. Power Sources 97, 804–806 (2001).

    Google Scholar 

  24. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013). This work reports on the self-healing electrostatic shield mechanism for suppressing Li dendrite deposition.

    CAS  Google Scholar 

  25. Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003).

    CAS  Google Scholar 

  26. Qi, Y., Guo, H., Hector, L. G. & Timmons, A. Threefold increase in the Young's modulus of graphite negative electrode during lithium intercalation. J. Electrochem. Soc. 157, A558–A566 (2010).

    CAS  Google Scholar 

  27. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).

    CAS  Google Scholar 

  28. Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013).

    CAS  Google Scholar 

  29. Besenhard, J. et al. Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon–lithium electrodes. J. Power Sources 44, 413–420 (1993).

    Article  CAS  Google Scholar 

  30. Osaka, T., Momma, T., Matsumoto, Y. & Uchida, Y. Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J. Electrochem. Soc. 144, 1709–1713 (1997).

    CAS  Google Scholar 

  31. Abraham, K. M., Foos, J. S. & Goldman, J. L. Long cycle-life secondary lithium cells utilizing tetrahydrofuran. J. Electrochem. Soc. 131, 2197–2199 (1984).

    CAS  Google Scholar 

  32. Morita, M., Aoki, S. & Matsuda, Y. AC impedance behaviour of lithium electrode in organic electrolyte solutions containing additives. Electrochim. Acta 37, 119–123 (1992).

    CAS  Google Scholar 

  33. Ota, H., Shima, K., Ue, M. & Yamaki, J.-i. Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochim. Acta 49, 565–572 (2004).

    CAS  Google Scholar 

  34. Mori, M., Naruoka, Y., Naoi, K. & Fauteux, D. Modification of the lithium metal surface by nonionic polyether surfactants: quartz crystal microbalance studies. J. Electrochem. Soc. 145, 2340–2348 (1998).

    CAS  Google Scholar 

  35. Takehara, Z.-i. Future prospects of the lithium metal anode. J. Power Sources 68, 82–86 (1997).

    CAS  Google Scholar 

  36. Shiraishi, S., Kanamura, K. & Takehara, Z.-i. Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing HF by dissolution–deposition cycles. J. Electrochem. Soc. 146, 1633–1639 (1999).

    CAS  Google Scholar 

  37. Kanamura, K., Shiraishi, S. & Takehara, Z.-i. Electrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. J. Fluorine Chem. 87, 235–243 (1998).

    CAS  Google Scholar 

  38. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Google Scholar 

  39. Mogi, R. et al. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578–A1583 (2002).

    CAS  Google Scholar 

  40. Zhang, Y. et al. Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett. 14, 6889–6896 (2014).

    CAS  Google Scholar 

  41. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, A694–A702 (2009).

    CAS  Google Scholar 

  42. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Google Scholar 

  43. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). This work describes an electrolyte system with Li salt concentration up to 7 M, which is also known as 'solvent-in-salt'.

    Google Scholar 

  44. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    CAS  Google Scholar 

  45. Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    CAS  Google Scholar 

  46. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Google Scholar 

  47. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    CAS  Google Scholar 

  48. Marchioni, F. et al. Protection of lithium metal surfaces using chlorosilanes. Langmuir 23, 11597–11602 (2007).

    CAS  Google Scholar 

  49. Thompson, R. S., Schroeder, D. J., López, C. M., Neuhold, S. & Vaughey, J. T. Stabilization of lithium metal anodes using silane-based coatings. Electrochem. Commun. 13, 1369–1372 (2011).

    CAS  Google Scholar 

  50. Umeda, G. A. et al. Protection of lithium metal surfaces using tetraethoxysilane. J. Mater. Chem. 21, 1593–1599 (2011).

    CAS  Google Scholar 

  51. Wu, M., Wen, Z., Liu, Y., Wang, X. & Huang, L. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries. J. Power Sources 196, 8091–8097 (2011).

    CAS  Google Scholar 

  52. Zhang, Y. et al. An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries. J. Power Sources 277, 304–311 (2015).

    CAS  Google Scholar 

  53. Belov, D., Yarmolenko, O., Peng, A. & Efimov, O. Lithium surface protection by polyacetylene in situ polymerization. Synth. Met. 156, 745–751 (2006).

    CAS  Google Scholar 

  54. Liu, Q. C. et al. Artificial protection film on lithium metal anode toward long-cycle-life lithium–oxygen batteries. Adv. Mater. 27, 5241–5247 (2015).

    CAS  Google Scholar 

  55. Basile, A., Bhatt, A. I. & O'Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, 11794 (2016).

    Google Scholar 

  56. Li, N. W., Yin, Y. X., Yang, C. P. & Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).

    CAS  Google Scholar 

  57. Dudney, N. J. Addition of a thin-film inorganic solid electrolyte (Lipon) as a protective film in lithium batteries with a liquid electrolyte. J. Power Sources 89, 176–179 (2000).

    CAS  Google Scholar 

  58. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    CAS  Google Scholar 

  59. Cao, Y., Meng, X. & Elam, J. W. Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 3, 858–863 (2016).

    CAS  Google Scholar 

  60. Lee, H., Lee, D. J., Kim, Y.-J., Park, J.-K. & Kim, H.-T. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. J. Power Sources 284, 103–108 (2015).

    CAS  Google Scholar 

  61. Park, K. et al. New battery strategies with a polymer/Al2O3 separator. J. Power Sources 263, 52–58 (2014).

    CAS  Google Scholar 

  62. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014). This work demonstrates the efficacy of engineering a nanoscale interfacial layer for suppressing dendritic deposition and improving cycling efficiency.

    CAS  Google Scholar 

  63. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    CAS  Google Scholar 

  64. Kim, J.-S., Kim, D. W., Jung, H. T. & Choi, J. W. Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive. Chem. Mater. 27, 2780–2787 (2015).

    CAS  Google Scholar 

  65. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). This work reports on a 3D current collector that is capable of homogenizing Li-ion flux and rendering Li deposition more uniform.

    CAS  Google Scholar 

  66. Yun, Q. et al. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 28, 6932–6939 (2016).

    CAS  Google Scholar 

  67. Lu, L.-L. et al. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 16, 4431–4437 (2016).

    CAS  Google Scholar 

  68. Zhamu, A. et al. Reviving rechargeable lithium metal batteries: enabling next- generation high-energy and high-power cells. Energy Environ. Sci. 5, 5701–5707 (2012).

    CAS  Google Scholar 

  69. Ji, X. et al. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today 7, 10–20 (2012).

    CAS  Google Scholar 

  70. Ryou, M. H. et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv. Energy Mater. 2, 645–650 (2012).

    CAS  Google Scholar 

  71. Shin, W.-K., Kannan, A. G. & Kim, D.-W. Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces 7, 23700–23707 (2015).

    CAS  Google Scholar 

  72. Liang, Z. et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 15, 2910–2916 (2015).

    CAS  Google Scholar 

  73. Cheng, X. B. et al. Dendrite-free lithium deposition induced by uniformly distributed lithium-ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).

    CAS  Google Scholar 

  74. Ryou, M. H., Lee, Y. M., Lee, Y., Winter, M. & Bieker, P. Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating. Adv. Funct. Mater. 25, 834–841 (2015).

    CAS  Google Scholar 

  75. Kim, J. S. & Yoon, W. Y. Improvement in lithium cycling efficiency by using lithium powder anode. Electrochim. Acta 50, 531–534 (2004).

    CAS  Google Scholar 

  76. Heine, J. et al. Coated lithium powder (CLiP) electrodes for lithium-metal batteries. Adv. Energy Mater. 4, 1300815 (2014).

    Google Scholar 

  77. Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016). This work demonstrates a stable host for Li metal anodes to reduce volume change, stabilize interface, homogenize Li-ion flux and thus improve cycling stability.

    CAS  Google Scholar 

  78. Liu, Y. et al. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 7, 10992 (2016).

    CAS  Google Scholar 

  79. Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    CAS  Google Scholar 

  80. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    CAS  Google Scholar 

  81. Kanno, R. & Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S GeS2 P2S5 system. J. Electrochem. Soc. 148, A742–A746 (2001).

    CAS  Google Scholar 

  82. Hayashi, A., Hama, S., Morimoto, H., Tatsumisago, M. & Minami, T. Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling. J. Am. Ceram. Soc. 84, 477–479 (2001).

    CAS  Google Scholar 

  83. Mizuno, F., Hayashi, A., Tadanaga, K. & Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918–921 (2005).

    CAS  Google Scholar 

  84. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). This work describes an inorganic solid electrolyte, Li 10 GeP 2 S 12 , with ionic conductivity of 12 mS cm−1 at room temperature, comparable to liquid electrolytes.

    CAS  Google Scholar 

  85. Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

    Google Scholar 

  86. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS  Google Scholar 

  87. Inaguma, Y. et al. High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993).

    CAS  Google Scholar 

  88. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12 . Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    CAS  Google Scholar 

  89. Cho, Y.-H. et al. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3 . J. Mater. Sci. 47, 5970–5977 (2012).

    CAS  Google Scholar 

  90. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    CAS  Google Scholar 

  91. Yu, S. et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater. 28, 197–206 (2016).

    CAS  Google Scholar 

  92. Alpen, U.v., Rabenau, A. & Talat, G. Ionic conductivity in Li3N single crystals. Appl. Phys. Lett. 30, 621–623 (1977).

    Google Scholar 

  93. Rabenau, A. Lithium nitride and related materials case study of the use of modern solid state research techniques. Solid State Ionics 6, 277–293 (1982).

    CAS  Google Scholar 

  94. Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N. & Adachi, G.-y. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023–1027 (1990).

    CAS  Google Scholar 

  95. Bates, J. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ionics 53, 647–654 (1992).

    Google Scholar 

  96. Herbert, E., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520, 413–418 (2011).

    CAS  Google Scholar 

  97. Croce, F., Appetecchi, G., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS  Google Scholar 

  98. Edman, L., Ferry, A. & Doeff, M. M. Slow recrystallization in the polymer electrolyte system poly (ethylene oxide) n–LiN (CF3SO2)2 . J. Mater. Res. 15, 1950–1954 (2000).

    CAS  Google Scholar 

  99. Nishimoto, A., Watanabe, M., Ikeda, Y. & Kohjiya, S. High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers. Electrochim. Acta 43, 1177–1184 (1998).

    CAS  Google Scholar 

  100. Deng, Z., Wang, Z., Chu, I.-H., Luo, J. & Ong, S. P. Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016).

    CAS  Google Scholar 

  101. Stone, G. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

    CAS  Google Scholar 

  102. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Google Scholar 

  103. Meyer, W. H. Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

    CAS  Google Scholar 

  104. Manuel Stephan, A. & Nahm, K. S. Review on composite polymer electrolytes for lithium batteries. Polymer 47, 5952–5964 (2006).

    Google Scholar 

  105. Quartarone, E. & Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40, 2525–2540 (2011).

    CAS  Google Scholar 

  106. Singh, M. et al. Effect of molecular weight on the mechanical and electrical properties of block copolymer electrolytes. Macromolecules 40, 4578–4585 (2007).

    CAS  Google Scholar 

  107. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    CAS  Google Scholar 

  108. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    CAS  Google Scholar 

  109. Aetukuri, N. B. et al. Flexible ion-conducting composite membranes for lithium batteries. Adv. Energy Mater. 5, 1500265 (2015).

    Google Scholar 

  110. Zhou, W. et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 138, 9385–9388 (2016).

    CAS  Google Scholar 

  111. Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2015).

    CAS  Google Scholar 

  112. Fu, K. K. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl Acad. Sci. USA 113, 7094–7099 (2016).

    CAS  Google Scholar 

  113. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    CAS  Google Scholar 

  114. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).

    CAS  Google Scholar 

  115. Liu, X. H. et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312–3318 (2011).

    CAS  Google Scholar 

  116. Liu, X. H. et al. Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Appl. Phys. Lett. 98, 183107 (2011).

    Google Scholar 

  117. Sagane, F., Shimokawa, R., Sano, H., Sakaebe, H. & Iriyama, Y. In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. J. Power Sources 225, 245–250 (2013).

    CAS  Google Scholar 

  118. Nishikawa, K. et al. In situ observation of dendrite growth of electrodeposited Li metal. J. Electrochem. Soc. 157, A1212–A1217 (2010).

    CAS  Google Scholar 

  119. Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

    CAS  Google Scholar 

  120. Unocic, R. R. et al. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Microsc. Microanal. 20, 1029–1037 (2014).

    CAS  Google Scholar 

  121. Zeng, Z. et al. Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745–1750 (2014).

    CAS  Google Scholar 

  122. Sacci, R. L. et al. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett. 15, 2011–2018 (2015).

    CAS  Google Scholar 

  123. Sacci, R. L. et al. Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104–2107 (2014).

    CAS  Google Scholar 

  124. Leenheer, A. J., Jungjohann, K. L., Zavadil, K. R., Sullivan, J. P. & Harris, C. T. Lithium electrodeposition dynamics in aprotic electrolyte observed in situ via transmission electron microscopy. ACS Nano 9, 4379–4389 (2015).

    CAS  Google Scholar 

  125. Li, Y. et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes. Nat. Mater. 13, 1149–1156 (2014).

    CAS  Google Scholar 

  126. Lim, L. Y., Fan, S., Hng, H. H. & Toney, M. F. Storage capacity and cycling stability in Ge anodes: relationship of anode structure and cycling rate. Adv. Energy Mater. 5, 1500599 (2015).

    Google Scholar 

  127. Shui, J.-L. et al. Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 2255 (2013).

    Google Scholar 

  128. Harry, K. J., Hallinan, D. T., Parkinson, D. Y., MacDowell, A. A. & Balsara, N. P. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014).

    CAS  Google Scholar 

  129. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    CAS  Google Scholar 

  130. Wandt, J. et al. Operando electron paramagnetic resonance spectroscopy–formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy Environ. Sci. 8, 1358–1367 (2015).

    CAS  Google Scholar 

  131. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    CAS  Google Scholar 

  132. Xiang, B., Wang, L., Liu, G. & Minor, A. M. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J. Electrochem. Soc. 160, A415–A419 (2013).

    CAS  Google Scholar 

  133. Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    CAS  Google Scholar 

  134. Bieker, G., Winter, M. & Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 17, 8670–8679 (2015).

    CAS  Google Scholar 

  135. White, S. R. et al. Autonomic healing of polymer composites. Nature 409, 794–797 (2001).

    CAS  Google Scholar 

  136. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    CAS  Google Scholar 

  137. Wu, H., Zhuo, D., Kong, D. & Cui, Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat. Commun. 5, 5193 (2014).

    CAS  Google Scholar 

  138. Lin, D., Zhuo, D., Liu, Y. & Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016).

    CAS  Google Scholar 

  139. Yim, T. et al. Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett. 15, 5059–5067 (2015).

    CAS  Google Scholar 

  140. Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy, under the Battery Materials Research (BMR) program and Battery500 Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing