Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Normal, superconducting and topological regimes of hybrid double quantum dots

Abstract

Epitaxial semiconductor–superconductor hybrid materials are an excellent basis for studying mesoscopic and topological superconductivity, as the semiconductor inherits a hard superconducting gap while retaining tunable carrier density1. Here, we investigate double-quantum-dot structures made from InAs nanowires with a patterned epitaxial Al two-facet shell2 that proximitizes two gate-defined segments along the nanowire. We follow the evolution of mesoscopic superconductivity and charging energy in this system as a function of magnetic field and voltage-tuned barriers. Interdot coupling is varied from strong to weak using side gates, and the ground state is varied between normal, superconducting and topological regimes by applying a magnetic field. We identify the topological transition by tracking the spacing between successive co-tunnelling peaks as a function of axial magnetic field3 and show that the individual dots host weakly hybridized Majorana modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double quantum dot with controllable coupling and superconductivity.
Figure 2: Tuning interdot coupling.
Figure 3: Addition energy as a function of interdot coupling.
Figure 4: Signatures of Majorana modes via even–odd peak spacing along co-tunnelling lines.

Similar content being viewed by others

References

  1. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotech. 10, 232–236 (2015).

    Article  CAS  Google Scholar 

  2. Krogstrup, P. et al. Epitaxy of semiconductor–superconductor nanowires. Nat. Mater. 14, 400–406 (2015).

    Article  CAS  Google Scholar 

  3. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  CAS  Google Scholar 

  4. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  Google Scholar 

  5. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  Google Scholar 

  6. Aasen, D. et al. Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2015).

    Google Scholar 

  7. Freedman, M. H., Kitaev, A., Larsen, M. J. & Wang, Z. Topological quantum computation. Bull. Am. Math. Soc. 40, 31–38 (2003).

    Article  Google Scholar 

  8. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  CAS  Google Scholar 

  9. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices. Science 336, 1003–1007 (2012).

    Article  CAS  Google Scholar 

  10. Deng, M. T. et al. Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device. Nano Lett. 12, 6414–6419 (2012).

    Article  CAS  Google Scholar 

  11. Das, A. et al. Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012).

    Article  CAS  Google Scholar 

  12. Churchill, H. O. H. et al. Superconductor–nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B 87, 241401 (2013).

    Article  Google Scholar 

  13. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  CAS  Google Scholar 

  14. Fasth, C., Fuhrer, A., Björk, M. T. & Samuelson, L. Tunable double quantum dots in InAs nanowires defined by local gate electrodes. Nano Lett. 5, 1487–1490 (2005).

    Article  CAS  Google Scholar 

  15. van der Wiel, W. G. et al. Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002).

    Article  Google Scholar 

  16. Tuominen, M. T., Hergenrother, J. M., Tighe, T. S. & Tinkham M. Experimental evidence for parity-based 2e periodicity in a superconducting single-electron tunneling transistor. Phys. Rev. Lett. 69, 1997–2000 (1992).

    Article  CAS  Google Scholar 

  17. Bibow, E., Lafarge, P. & Lévy, L. P. Resonant Cooper pair tunneling through a double-island qubit. Phys. Rev. Lett. 88, 017003 (2002).

    Article  CAS  Google Scholar 

  18. Higginbotham, A. P. et al. Parity lifetime of bound states in a proximitized semiconductor nanowire. Nat. Phys. 11, 1017–1021 (2015).

    Article  CAS  Google Scholar 

  19. Waugh, F. R. et al. Single-electron charging in double and triple quantum dots with tunable coupling. Phys. Rev. Lett 75, 705–708 (1995).

    Article  CAS  Google Scholar 

  20. Kouwenhoven, L. P. et al. Electron Transport in Quantum Dots (Kluwer Academic, 1997).

    Google Scholar 

  21. Livermore, C., Crouch, C. H., Westervelt, R. M., Campman, K. L. & Gossard, A. C. The Coulomb blockade in coupled quantum dots. Science 274, 1332–1335 (1996).

    Article  CAS  Google Scholar 

  22. Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotech. 2, 622–625 (2007).

    Article  CAS  Google Scholar 

  23. Waugh, F. R. et al. Measuring interactions between tunnel-coupled quantum dots. Phys. Rev. B 53, 1423–1420 (1996).

    Article  Google Scholar 

  24. Larsen, T. W. et al. A semiconductor nanowire-based superconducting qubit. Phys. Rev. Lett. 115, 127001 (2015).

    Article  CAS  Google Scholar 

  25. De Franceschi, S., Kouwenhoven, L., Schönenberger, C. & Wernsdorfer, W. Hybrid superconductor–quantum dot devices. Nat. Nanotech. 5, 703–711 (2010).

    Article  CAS  Google Scholar 

  26. Lafarge, P., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Two-electron quantization of the charge on a superconductor. Nature 365, 422–424 (1993).

    Article  CAS  Google Scholar 

  27. Feigelman, M. V., Kamenev, A., Larkin, A. I. & Skvortsov, M. A. Weak charge quantization on a superconducting island. Phys. Rev. B 66, 054502 (2002).

    Article  Google Scholar 

  28. Lafarge, P., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Measurement of the even–odd free-energy difference of an isolated superconductor. Phys. Rev. Lett. 70, 994–997 (1993).

    Article  CAS  Google Scholar 

  29. Averin, D. V. & Nazarov, Y. V. Single-electron charging of a superconducting island. Phys. Rev. Lett. 69, 1993–1996 (1992).

    Article  CAS  Google Scholar 

  30. van Heck, B., Lutchyn, R. M. & Glazman, L. I. Conductance of a proximitized nanowire in the Coulomb blockade regime. Phys. Rev. B 93, 235431 (2016).

    Article  Google Scholar 

  31. Das Sarma, S., Sau, J. D. & Stanescu, T. D. Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor–semiconductor nanowire. Phys. Rev. B 86, 220506 (2012).

    Article  Google Scholar 

  32. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    Article  Google Scholar 

  33. Rainis, D., Trifunovic, L., Klinovaja, J. & Loss, D. et al. Towards a realistic transport modeling in a superconducting nanowire with Majorana fermions. Phys. Rev. B 87, 024515 (2013).

    Article  Google Scholar 

  34. Stanescu, T. D., Lutchyn, R. M. & Das Sarma, S. Dimensional crossover in spin–orbit-coupled semiconductor nanowires with induced superconducting pairing. Phys. Rev. B 87, 094518 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Danish National Research Foundation and Microsoft Research. C.M.M. acknowledges support from the Villum Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.K. and J.N. developed the nanowire materials. D.S. fabricated the devices. D.S., J.S.Y. and S.M.A. carried out the measurements with input from C.M.M. D.S. analysed the data. D.S., J.S.Y. and C.M.M. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to C. M. Marcus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherman, D., Yodh, J., Albrecht, S. et al. Normal, superconducting and topological regimes of hybrid double quantum dots. Nature Nanotech 12, 212–217 (2017). https://doi.org/10.1038/nnano.2016.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing