Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes

Abstract

Fluid phase transitions inside single, isolated carbon nanotubes are predicted to deviate substantially from classical thermodynamics. This behaviour enables the study of ice nanotubes and the exploration of their potential applications. Here we report measurements of the phase boundaries of water confined within six isolated carbon nanotubes of different diameters (1.05, 1.06, 1.15, 1.24, 1.44 and 1.52 nm) using Raman spectroscopy. The results reveal an exquisite sensitivity to diameter and substantially larger temperature elevations of the freezing transition (by as much as 100 °C) than have been theoretically predicted. Dynamic water filling and reversible freezing transitions were marked by 2–5 cm−1 shifts in the radial breathing mode frequency, revealing reversible melting bracketed to 105–151 °C and 87–117 °C for 1.05 and 1.06 nm single-walled carbon nanotubes, respectively. Near-ambient phase changes were observed for 1.44 and 1.52 nm nanotubes, bracketed between 15–49 °C and 3–30 °C, respectively, whereas the depression of the freezing point was observed for the 1.15 nm nanotube between −35 and 10 °C. We also find that the interior aqueous phase reversibly decreases the axial thermal conductivity of the nanotube by as much as 500%, allowing digital control of the heat flux.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence of filling and phase transition of water inside CNTs.
Figure 2: Diameter-dependent vapour–liquid and liquid–solid phase transitions of confined water inside CNTs.
Figure 3: Reversibility of the water phases inside the CNT on heating and cooling, and agreement in the phase transition data obtained by the two heating methods.
Figure 4: Comparison of the diameter-dependent phase transition temperatures and reduction in the axial conductivity of the CNTs on water filling.

Similar content being viewed by others

References

  1. Shultz, M. J., Vu, T. H., Meyer, B. & Bisson, P. Water: a responsive small molecule. Acc. Chem. Res. 45, 15–22 (2012).

    Article  CAS  Google Scholar 

  2. Iijima, S. & Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993).

    Article  CAS  Google Scholar 

  3. Koga, K., Gao, G. T., Tanaka, H. & Zeng, X. C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412, 802–805 (2001).

    Article  CAS  Google Scholar 

  4. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  5. Zhao, Y. et al. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008).

    Article  CAS  Google Scholar 

  6. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  CAS  Google Scholar 

  7. Walther, J. H., Ritos, K., Cruz-Chu, E. R., Megaridis, C. M. & Koumoutsakos, P. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 13, 1910–1914 (2013).

    Article  CAS  Google Scholar 

  8. Noy, A. et al. Nanofluidics in carbon nanotubes. Nano Today 2, 22–29 (2007).

    Article  Google Scholar 

  9. Perez, M. Gibbs–Thomson effects in phase transformations. Scr. Mater. 52, 709–712 (2005).

    Article  CAS  Google Scholar 

  10. Christenson, H. K. Confinement effects on freezing and melting. J. Phys. Condens. Matter. 13, R95–R133 (2001).

    Article  CAS  Google Scholar 

  11. Maniwa, Y. et al. Phase transition in confined water inside carbon nanotubes. J. Phys. Soc. Jpn 71, 2863–2866 (2002).

    Article  CAS  Google Scholar 

  12. Takaiwa, D., Hatano, I., Koga, K. & Tanaka, H. Phase diagram of water in carbon nanotubes. Proc. Natl Acad. Sci. USA 105, 39–43 (2008).

    Article  CAS  Google Scholar 

  13. Bai, J., Wang, J. & Zeng, X. C. Multiwalled ice helixes and ice nanotubes. Proc. Natl Acad. Sci. USA 103, 19664–19667 (2006).

    Article  CAS  Google Scholar 

  14. Koga, K., Parra, R. D., Tanaka, H. & Zeng, X. C. Ice nanotube: what does the unit cell look like? J. Chem. Phys. 113, 5037–5040 (2000).

    Article  CAS  Google Scholar 

  15. Kyakuno, H. et al. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length. J. Chem. Phys. 134, 244501 (2011).

    Article  Google Scholar 

  16. Mann, D. J. & Halls, M. D. Water alignment and proton conduction inside carbon nanotubes. Phys. Rev. Lett. 90, 195503 (2003).

    Article  Google Scholar 

  17. Maniwa, Y. et al. Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem. Phys. Lett. 401, 534–538 (2005).

    Article  CAS  Google Scholar 

  18. Mikami, F., Matsuda, K., Kataura, H. & Maniwa, Y. Dielectric properties of water inside single-walled carbon nanotubes. ACS Nano 3, 1279–1287 (2009).

    Article  CAS  Google Scholar 

  19. Maniwa, Y. et al. Water-filled single-wall carbon nanotubes as molecular nanovalves. Nat. Mater. 6, 135–141 (2007).

    Article  CAS  Google Scholar 

  20. Shiomi, J., Kimura, T. & Maruyama, S. Molecular dynamics of ice-nanotube formation inside carbon nanotubes. J. Phys. Chem. C 111, 12188–12193 (2007).

    Article  CAS  Google Scholar 

  21. Ghosh, S., Ramanathan, K. V. & Sood, A. K. Water at nanoscale confined in single-walled carbon nanotubes studied by NMR. Europhys. Lett. 65, 678–684 (2004).

    Article  CAS  Google Scholar 

  22. Luo, C., Fa, W., Zhou, J., Dong, J. & Zeng, X. C. Ferroelectric ordering in ice nanotubes confined in carbon nanotubes. Nano Lett. 8, 2607–2612 (2008).

    Article  CAS  Google Scholar 

  23. Pascal, T. A., Goddard, W. A. & Jung, Y. Entropy and the driving force for the filling of carbon nanotubes with water. Proc. Natl Acad. Sci. USA 108, 11794–11798 (2011).

    Article  CAS  Google Scholar 

  24. Striolo, A., Chialvo, A. A., Gubbins, K. E. & Cummings, P. T. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. J. Chem. Phys. 122, 234712 (2005).

    Article  CAS  Google Scholar 

  25. Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    Article  CAS  Google Scholar 

  26. Lee, C. Y., Choi, W., Han, J.-H. & Strano, M. S. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329, 1320–1324 (2010).

    Article  CAS  Google Scholar 

  27. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  Google Scholar 

  28. Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).

    Article  CAS  Google Scholar 

  29. Striolo, A. The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6, 633–639 (2006).

    Article  CAS  Google Scholar 

  30. Cabeza, L. F., Mehling, H., Hiebler, S. & Ziegler, F. Heat transfer enhancement in water when used as PCM in thermal energy storage. Appl. Therm. Eng. 22, 1141–1151 (2002).

    Article  CAS  Google Scholar 

  31. Thomas, M. & Corry, B. Thermostat choice significantly influences water flow rates in molecular dynamics studies of carbon nanotubes. Microfluid. Nanofluid. 18, 41–47 (2015).

    Article  CAS  Google Scholar 

  32. Werder, T., Walther, J. H., Jaffe, R. L., Halicioglu, T. & Koumoutsakos, P. On the water–carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345–1352 (2003).

    Article  CAS  Google Scholar 

  33. Choi, W., Lee, C. Y., Ham, M.-H., Shimizu, S. & Strano, M. S. Dynamics of simultaneous, single ion transport through two single-walled carbon nanotubes: observation of a three-state system. J. Am. Chem. Soc. 133, 203–205 (2011).

    Article  CAS  Google Scholar 

  34. Choi, W. et al. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 4, 2397 (2013).

    Article  Google Scholar 

  35. Jorio, A. et al. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001).

    Article  CAS  Google Scholar 

  36. Jorio, A. et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 65, 23–27 (2002).

    Google Scholar 

  37. Li, F. et al. Identification of the constituents of double-walled carbon nanotubes using Raman spectra taken with different laser-excitation energies. J. Mater. Res. 18, 1251–1258 (2003).

    Article  CAS  Google Scholar 

  38. Cambré, S., Schoeters, B., Luyckx, S., Goovaerts, E. & Wenseleers, W. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Phys. Rev. Lett. 104, 207401 (2010).

    Article  Google Scholar 

  39. Wenseleers, W., Cambré, S., Čulin, J., Bouwen, A. & Goovaerts, E. Effect of water filling on the electronic and vibrational resonances of carbon nanotubes: characterizing tube opening by Raman spectroscopy. Adv. Mater. 19, 2274–2278 (2007).

    Article  CAS  Google Scholar 

  40. Longhurst, M. J. & Quirke, N. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids. J. Chem. Phys. 125, 184705 (2006).

    Article  CAS  Google Scholar 

  41. Zhang, Y., Son, H., Zhang, J., Kong, J. & Liu, Z. Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes. J. Phys. Chem. C 111, 1988–1992 (2007).

    Article  CAS  Google Scholar 

  42. Zhang, Y., Xie, L., Zhang, J., Wu, Z. & Liu, Z. Temperature coefficients of Raman frequency of individual single-walled carbon nanotubes. J. Phys. Chem. C 111, 14031–14034 (2007).

    Article  CAS  Google Scholar 

  43. Huang, F. et al. Temperature dependence of the Raman spectra of carbon nanotubes. J. Appl. Phys. 76, 2053–2055 (2000).

    Google Scholar 

  44. Wang, C. Y., Ru, C. Q. & Mioduchowski, A. Free vibration of multiwall carbon nanotubes. J. Appl. Phys. 97, 114323 (2005).

    Article  Google Scholar 

  45. Efron, B. & Tibshirani, R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54–75 (1986).

    Article  Google Scholar 

  46. Chiashi, S. et al. Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. Lett. 5, 408–412 (2014).

    Article  CAS  Google Scholar 

  47. Sliwinska-Bartkowiak, M., Jazdzewska, M., Huang, L. L. & Gubbins, K. E. Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses. Phys. Chem. Chem. Phys. 10, 4909–4919 (2008).

    Article  CAS  Google Scholar 

  48. Radhakrishnan, R., Gubbins, K. E. & Sliwinska-Bartkowiak, M. Global phase diagrams for freezing in porous media. J. Chem. Phys. 116, 1147–1155 (2002).

    Article  CAS  Google Scholar 

  49. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  CAS  Google Scholar 

  50. Takahashi, K., Inoue, M. & Ito, Y . Defective carbon nanotube for use as a thermal rectifier. Jpn J. Appl. Phys. 49, 02BD12 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office through the Institute for Soldier Nanotechnologies, under contract number W911NF-13-D-0001. We acknowledge support from the Shell-MIT-EI Energy Research Fund as well. We also acknowledge support from the National Science Foundation under Grant Number 1306529.

Author information

Authors and Affiliations

Authors

Contributions

K.V.A, S.S. and M.S.S. conceived and designed the experiments. K.V.A., S.S., L.W.D. and D.K. performed the experiments, analyzed the data, and contributed materials/analysis tools. K.V.A. and M.S.S. wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, K., Shimizu, S., Drahushuk, L. et al. Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nature Nanotech 12, 267–273 (2017). https://doi.org/10.1038/nnano.2016.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing