Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas

Abstract

The rational design of photonic nanostructures consists of anticipating their optical response from systematic variations of simple models. This strategy, however, has limited success when multiple objectives are simultaneously targeted, because it requires demanding computational schemes. To this end, evolutionary algorithms can drive the morphology of a nano-object towards an optimum through several cycles of selection, mutation and cross-over, mimicking the process of natural selection. Here, we present a numerical technique that can allow the design of photonic nanostructures with optical properties optimized along several arbitrary objectives. In particular, we combine evolutionary multi-objective algorithms with frequency-domain electrodynamical simulations to optimize the design of colour pixels based on silicon nanostructures that resonate at two user-defined, polarization-dependent wavelengths. The scattering spectra of optimized pixels fabricated by electron-beam lithography show excellent agreement with the targeted objectives. The method is self-adaptive to arbitrary constraints and therefore particularly apt for the design of complex structures within predefined technological limits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of EMO.
Figure 2: Structure model for EMO.
Figure 3: Results of EMO for identical target wavelengths λX = λY = 630 nm.
Figure 4: Pareto front example of an optimization run with λX = 550 nm and λY = 450 nm.
Figure 5: Experimental demonstration of several dual-resonant silicon structures based on EMO.
Figure 6: Polarization-filtered dark-field images of micrometre-scale pictures designed by EMO.

Similar content being viewed by others

References

  1. Tan, S. J. et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article  CAS  Google Scholar 

  2. Lindfors, K. et al. Imaging and steering unidirectional emission from nanoantenna array metasurfaces. ACS Photon. 3, 286–292 (2016).

    Article  CAS  Google Scholar 

  3. Black, L.-J., Wang, Y., de Groot, C. H., Arbouet, A. & Muskens, O. L. Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces. ACS Nano 8, 6390–6399 (2014).

    Article  CAS  Google Scholar 

  4. Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013).

    Article  CAS  Google Scholar 

  5. Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    Article  CAS  Google Scholar 

  6. Albella, P., Alcaraz de la Osa, R., Moreno, F. & Maier, S. A. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photon. 1, 524–529 (2014).

    Article  CAS  Google Scholar 

  7. Bakker, R. M. et al. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15, 2137–2142 (2015).

    Article  CAS  Google Scholar 

  8. Ginn, J. C. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article  Google Scholar 

  9. Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Article  Google Scholar 

  10. Schmidt, M. K. et al. Dielectric antennas—a suitable platform for controlling magnetic dipolar emission. Opt. Express 20, 13636–13650 (2012).

    Article  CAS  Google Scholar 

  11. Cao, L., Fan, P., Barnard, E. S., Brown, A. M. & Brongersma, M. L. Tuning the color of silicon nanostructures. Nano Lett. 10, 2649–2654 (2010).

    Article  CAS  Google Scholar 

  12. Traviss, D. J., Schmidt, M. K., Aizpurua, J. & Muskens, O. L. Antenna resonances in low aspect ratio semiconductor nanowires. Opt. Express 23, 22771–22787 (2015).

    Article  CAS  Google Scholar 

  13. Zhao, W. et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41, 147–150 (2016).

    Article  CAS  Google Scholar 

  14. Yu, Y. F. et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photon. Rev. 9, 412–418 (2015).

    Article  CAS  Google Scholar 

  15. Shcherbakov, M. R. et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14, 6488–6492 (2014).

    Article  CAS  Google Scholar 

  16. Wiecha, P. R. et al. Enhanced nonlinear optical response from individual silicon nanowires. Phys. Rev. B 91, 121416 (2015).

    Article  Google Scholar 

  17. Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F. & Luk'yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013).

    Article  Google Scholar 

  18. Sivanandam, S. & Deepa, S. Introduction to Genetic Algorithms (Springer, 2008).

    Google Scholar 

  19. Forestiere, C. et al. Particle-swarm optimization of broadband nanoplasmonic arrays. Opt. Lett. 35, 133–135 (2010).

    Article  Google Scholar 

  20. Feichtner, T., Selig, O., Kiunke, M. & Hecht, B. Evolutionary optimization of optical antennas. Phys. Rev. Lett. 109, 127701 (2012).

    Article  Google Scholar 

  21. Forestiere, C. et al. Genetically engineered plasmonic nanoarrays. Nano Lett. 12, 2037–2044 (2012).

    Article  CAS  Google Scholar 

  22. Forestiere, C., He, Y., Wang, R., Kirby, R. M. & Dal Negro, L. Inverse design of metal nanoparticles’ morphology. ACS Photon. 3, 68–78 (2016).

    Article  CAS  Google Scholar 

  23. Ginzburg, P., Berkovitch, N., Nevet, A., Shor, I. & Orenstein, M. Resonances on-demand for plasmonic nano-particles. Nano Lett. 11, 2329–2333 (2011).

    Article  CAS  Google Scholar 

  24. Macías, D., Adam, P.-M., Ruíz-Cortés, V., Rodríguez-Oliveros, R. & Sánchez-Gil, J. A. Heuristic optimization for the design of plasmonic nanowires with specific resonant and scattering properties. Opt. Express 20, 13146–13163 (2012).

    Article  Google Scholar 

  25. Bigourdan, F., Marquier, F., Hugonin, J.-P. & Greffet, J.-J. Design of highly efficient metallo-dielectric patch antennas for single-photon emission. Opt. Express 22, 2337–2347 (2014).

    Article  CAS  Google Scholar 

  26. Mirzaei, A., Miroshnichenko, A. E., Shadrivov, I. V. & Kivshar, Y. S. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett. 105, 011109 (2014).

    Article  Google Scholar 

  27. Chen, P. Y., Chen, C. H., Wu, J. S., Wen, H. C. & Wang, W. P. Optimal design of integrally gated CNT field-emission devices using a genetic algorithm. Nanotechnology 18, 395203 (2007).

    Article  CAS  Google Scholar 

  28. Wang, M., Alparslan, A., Schnepp, S. M. & Hafner, C . Optimization of a plasmon-assisted waveguide coupler using FEM and MMP. Progr. Electromag. Res. B 59, 219–229 (2014).

    Article  CAS  Google Scholar 

  29. Kessentini, S., Barchiesi, D., Grosges, T. & Lamy de la Chapelle, M. Particle swarm optimization and evolutionary methods for plasmonic biomedical applications. In 2011 IEEE Congress on Evolutionary Computation (CEC), 2315–2320 (IEEE, 2011).

  30. Jung, J. Robust design of plasmonic waveguide using gradient index and multiobjective optimization. IEEE Photon. Technol. Lett. 28, 756–758 (2016).

    Article  CAS  Google Scholar 

  31. Deb, K. Multi-objective Optimization Using Evolutionary Algorithms Vol. 16 (Wiley, 2001).

    Google Scholar 

  32. Shegai, T. et al. A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, 481 (2011).

    Article  Google Scholar 

  33. Aouani, H. et al. Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas. ACS Nano 7, 669–675 (2013).

    Article  CAS  Google Scholar 

  34. Dopf, K. et al. Coupled T-shaped optical antennas with two resonances localized in a common nanogap. ACS Photon. 2, 1644–1651 (2015).

    Article  CAS  Google Scholar 

  35. Giannini, V. & Sánchez-Gil, J. A. Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Opt. Lett. 33, 899–901 (2008).

    Article  CAS  Google Scholar 

  36. Harutyunyan, H., Volpe, G., Quidant, R. & Novotny, L. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012).

    Article  Google Scholar 

  37. Celebrano, M. et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotech. 10, 412–417 (2015).

    Article  CAS  Google Scholar 

  38. Girard, C. Near fields in nanostructures. Rep. Prog. Phys. 68, 1883–1933 (2005).

    Article  Google Scholar 

  39. Goh, X. M., Ng, R. J. H., Wang, S., Tan, S. J. & Yang, J. K. Comparative study of plasmonic colors from all-metal structures of posts and pits. ACS Photon. 3, 1000–1009 (2016).

    Article  CAS  Google Scholar 

  40. Li, Z., Clark, A. W. & Cooper, J. M. Dual color plasmonic pixels create a polarization controlled nano color palette. ACS Nano 10, 492–498 (2016).

    Article  Google Scholar 

  41. Beume, N., Naujoks, B. & Emmerich, M. SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007).

    Article  Google Scholar 

  42. Martin, O. J. F., Girard, C. & Dereux, A. Generalized field propagator for electromagnetic scattering and light confinement. Phys. Rev. Lett. 74, 526–529 (1995).

    Article  CAS  Google Scholar 

  43. Chaumet, P. C. & Sentenac, A. Simulation of light scattering by multilayer cross-gratings with the coupled dipole method. J. Quant. Spectrosc. Radiat. Transf. 110, 409–414 (2009).

    Article  CAS  Google Scholar 

  44. Gallinet, B. & Martin, O. J. F. Electromagnetic scattering of finite and infinite 3D lattices in polarizable backgrounds. Theoret. Comput. Nanophoton. 1176, 63–65 (2009).

    CAS  Google Scholar 

  45. Biscani, F., Izzo, D. & Yam, C. H. A global optimisation toolbox for massively parallel engineering optimisation. Preprint at https://arxiv.org/abs/1004.3824 (2010).

  46. Edwards, D. F. in Handbook of Optical Constants of Solids (ed. Palik, E. D.) 547–569 (Academic, 1997).

    Book  Google Scholar 

  47. Girard, C., Dujardin, E., Baffou, G. & Quidant, R. Shaping and manipulation of light fields with bottom-up plasmonic structures. New J. Phys. 10, 105016 (2008).

    Article  Google Scholar 

  48. Draine, B. T. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988).

    Article  CAS  Google Scholar 

  49. Han, X.-L., Larrieu, G., Fazzini, P.-F. & Dubois, E. Realization of ultra dense arrays of vertical silicon nanowires with defect free surface and perfect anisotropy using a top-down approach. Microelectron. Eng. 88, 2622–2624 (2011).

    Article  CAS  Google Scholar 

  50. Guerfi, Y., Carcenac, F. & Larrieu, G. High resolution HSQ nanopillar arrays with low energy electron beam lithography. Microelectron. Eng. 110, 173–176 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Salles and G.-M. Caruso for technical assistance. This work was partly supported under a ‘Campus Gaston Dupouy’ grant by the French government, Région Midi-Pyrénées, and the European Union (ERDF), by the computing facility centre CALMIP of the University of Toulouse (grant no. P12167) and by the LAAS-CNRS micro and nanotechnologies platform, a member of the French RENATECH network.

Author information

Authors and Affiliations

Authors

Contributions

P.R.W., V.P. and A.A. designed the research. C.G., A.A. and P.R.W implemented the codes and performed the simulations. A.L. and G.L. fabricated the samples by EBL. P.R.W and V.P. performed the dark-field scattering experiments. All authors contributed to the data analysis, figure preparation and manuscript writing.

Corresponding authors

Correspondence to Peter R. Wiecha, Arnaud Arbouet or Vincent Paillard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 969 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiecha, P., Arbouet, A., Girard, C. et al. Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nature Nanotech 12, 163–169 (2017). https://doi.org/10.1038/nnano.2016.224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.224

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing