Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable silver isotope fractionation in the natural transformation process of silver nanoparticles

Abstract

Nanoparticles in the environment can form by natural processes or be released due to human activities1. Owing to limited analytical methods, the behaviour of nanoparticles in the natural environment is poorly understood and until now they have only been described by the variations in the nanoparticle size or the concentration of the element of interest. Here we show that by using inductively coupled plasma mass spectrometry to measure silver (Ag) isotope ratios it is possible to understand the transformation processes of silver nanoparticles (AgNPs) in the environment. We found that the formation and dissolution of AgNPs under natural conditions caused significant variations in the ratio of natural Ag isotopes (107Ag and 109Ag) with an isotopic enrichment factor (ε) up to 0.86‰. Furthermore, we show that engineered AgNPs have distinctly different isotope fractionation effects to their naturally formed counterparts. Further studies will be needed to understand whether isotope analysis can be used to reveal the sources of AgNPs in the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reactions and physical processes of AgNPs and Ag+ in DOM-containing natural waters.
Figure 2: Ag isotope fractionation in the HA-mediated formation of AgNPs.
Figure 3: Ag isotope fractionation in the dissolution of AgNPs.
Figure 4: Ag isotope fractionation in the adsorption of Ag+ and the photoreduction of Ag salts.
Figure 5: Proposed dissolution pathways of AgNPs.

Similar content being viewed by others

References

  1. Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S. & Lead, J. R. Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 37, 517–531 (2011).

    Article  CAS  Google Scholar 

  2. Nowack, B., Krug, H. F. & Height, M. 120 years of nanosilver history: implications for policy makers. Environ. Sci. Technol. 45, 1177–1183 (2011).

    Article  CAS  Google Scholar 

  3. Mueller, N. C. & Nowack, B. Exposure modeling of engineered nanoparticles in the environment. Environ. Sci. Technol. 42, 4447–4453 (2008).

    Article  CAS  Google Scholar 

  4. Gottschalk, F., Sonderer, T., Scholz, R. W. & Nowack, B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 43, 9216–9222 (2009).

    Article  CAS  Google Scholar 

  5. Purcell, T. W. & Peters, J. J. Sources of silver in the environment. Environ. Toxicol. Chem. 17, 539–546 (1998).

    Article  CAS  Google Scholar 

  6. Luoma, S. N. Silver Nanotechnologies and the Environment: Old Problems or New Challenges? (Woodrow Wilson International Center for Scholars, 2008).

    Google Scholar 

  7. Akaighe, N. et al. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 45, 3895–3901 (2011).

    Article  CAS  Google Scholar 

  8. Adegboyega, N. F. et al. Interactions of aqueous Ag+ with fulvic acids: mechanisms of silver nanoparticle formation and investigation of stability. Environ. Sci. Technol. 47, 757–764 (2013).

    Article  CAS  Google Scholar 

  9. Yin, Y. G., Liu, J. F. & Jiang, G. B. Sunlight-induced reduction of ionic Ag and Au to metallic nanoparticles by dissolved organic matter. ACS Nano 6, 7910–7919 (2012).

    Article  CAS  Google Scholar 

  10. Pradhan, A., Seena, S., Pascoal, C. & Cassio, F. Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb. Ecol. 62, 58–68 (2011).

    Article  CAS  Google Scholar 

  11. Choi, O. K. & Hu, Z. Q. Nitrification inhibition by silver nanoparticles. Water Sci. Technol. 59, 1699–1702 (2009).

    Article  CAS  Google Scholar 

  12. Hauri, E. H., Carlson, R. W. & Bauer, J. The timing of core formation and volatile depletion in solar system objects from high-precision 107Pd-107Ag isotope systematics. Lunar Planet. Sci. Abs. 31, 1812 (2000).

    Google Scholar 

  13. Schonbachler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Silver isotope variations in chondrites: volatile depletion and the initial 107Pd abundance of the solar system. Geochim. Cosmochim. Acta 72, 5330–5341 (2008).

    Article  CAS  Google Scholar 

  14. Desaulty, A. M. & Albarede, F. Copper, lead, and silver isotopes solve a major economic conundrum of Tudor and early Stuart Europe. Geology 41, 135–138 (2013).

    Article  Google Scholar 

  15. Desaulty, A. M., Telouk, P., Albalat, E. & Albarede, F. Isotopic Ag-Cu-Pb record of silver circulation through 16th-18th century Spain. Proc. Natl Acad. Sci. USA 108, 9002–9007 (2011).

    Article  CAS  Google Scholar 

  16. Luo, Y., Dabek-Zlotorzynska, E., Celo, V., Muir, D. C. G. & Yang, L. Accurate and precise determination of silver isotope fractionation in environmental samples by multicollector-ICPMS. Anal. Chem. 82, 3922–3928 (2010).

    Article  CAS  Google Scholar 

  17. Chugaev, A. V. & Chernyshev, I. V. High-precision measurement of 107Ag/109Ag in native silver and gold by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem. Int. 50, 899–910 (2012).

    Article  CAS  Google Scholar 

  18. Jones, A. M., Garg, S., He, D., Pham, A. N. & Waite, T. D. Superoxide-mediated formation and charging of silver nanoparticles. Environ. Sci. Technol. 45, 1428–1434 (2011).

    Article  CAS  Google Scholar 

  19. Wiederhold, J. G. Metal stable isotope signatures as tracers in environmental geochemistry. Environ. Sci. Technol. 49, 2606–2624 (2015).

    Article  CAS  Google Scholar 

  20. Yamaguchi, T., Lindqvist, O., Boyce, J. B. & Claeson, T. Determination of the hydration structure of silver ions in aqueous silver perchlorate and nitrate solutions from EXAFS using synchrotron radiation. Acta Chem. Scand. A 38, 423–428 (1984).

    Article  Google Scholar 

  21. Liu, J. Y. & Hurt, R. H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44, 2169–2175 (2010).

    Article  CAS  Google Scholar 

  22. Horikoshi, S., Hidaka, H. & Serpone, N. Photocatalyzed degradation of polymers in aqueous semiconductor suspensions: V. Photomineralization of lactam ring-pendant polyvinylpyrrolidone at titania/water interfaces. J. Photochem. Photobiol. A Chem. 138, 69–77 (2001).

    Article  CAS  Google Scholar 

  23. Yang, L., Dabek-Zlotorzynska, E. & Celo, V. High precision determination of silver isotope ratios in commercial products by MC-ICP-MS. J. Anal. Atom. Spectrom. 24, 1564–1569 (2009).

    Article  CAS  Google Scholar 

  24. Luo, Y., Celo, V., Dabek-Zlotorzynska, E. & Yang, L. Effects of precipitation and UV photolysis on Ag isotope ratio: experimental studies. J. Anal. Atom. Spectrom. 27, 299–304 (2012).

    Article  CAS  Google Scholar 

  25. Gorham, J. M., Maccuspie, R. I., Klein, K. L., Fairbrother, D. H. & Holbrook, R. D. UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions. J. Nanopart. Res. 14, 1139 (2012).

    Article  Google Scholar 

  26. Grillet, N. et al. Photo-oxidation of individual silver nanoparticles: a real-time tracking of optical and morphological changes. J. Phys. Chem. C 117, 2274–2282 (2013).

    Article  CAS  Google Scholar 

  27. Croteau, M. N., Dybowska, A. D., Luoma, S. N., Misra, S. K. & Valsami-Jones, E. Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures. Environ. Chem. 11, 247–256 (2014).

    Article  CAS  Google Scholar 

  28. Laycock, A. et al. Synthesis and characterization of isotopically labeled silver nanoparticles for tracing studies. Environ. Sci. Nano 1, 271–283 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Chinese Academy of Sciences (No. XDB14010400), the National Basic Research Program of China (2015CB931903, 2015CB932003) and the National Natural Science Foundation of China (No. 21377141, 21422509, 91543104). Q.L. acknowledges the support from the Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and G.J. conceived and designed the experiments; D.L. and T.Z. performed the experiments; Q.L. and D.L. analyzed the data; Y.C. and Y.Y. gave comments on the paper; Q.L. and G.J. wrote the paper.

Corresponding authors

Correspondence to Qian Liu or Guibin Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1647 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Liu, Q., Zhang, T. et al. Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. Nature Nanotech 11, 682–686 (2016). https://doi.org/10.1038/nnano.2016.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing