Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

Abstract

The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic patterning via tam-SPL.
Figure 2: MFM characterization and micromagnetic simulations of the patterned domain structures.
Figure 3: Tunability of magnetic anisotropies and evolution of patterned domains with external magnetic field.
Figure 4: Writing–erasing–rewriting capability.
Figure 5: Patterning magnonic structures.

Similar content being viewed by others

References

  1. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  CAS  Google Scholar 

  2. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Mater. 11, 917–924 (2012).

    Article  CAS  Google Scholar 

  3. Nikitov, S. A., Tailhades, P. & Tsai, C. S. Spin waves in periodic magnetic structures—magnonic crystals. J. Magn. Magn. Mater. 236, 320–330 (2001).

    Article  CAS  Google Scholar 

  4. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–164 (2014).

    Article  CAS  Google Scholar 

  5. Temnov, V. V. Ultrafast acousto-magneto-plasmonics. Nature Photon. 6, 728–736 (2012).

    Article  CAS  Google Scholar 

  6. Maccaferri, N. et al. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photon. 2, 1769–1779 (2015).

    Article  CAS  Google Scholar 

  7. Kobljanskyj, Y. et al. Nano-structured magnetic metamaterial with enhanced nonlinear properties. Sci. Rep. 2, 478 (2012).

    Article  Google Scholar 

  8. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  9. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nature Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  10. Monticelli, M. et al. On-chip magnetic platform for single-particle manipulation with integrated electrical feedback. Small 12, 921–929 (2016).

    Article  CAS  Google Scholar 

  11. Chappert, C. Planar patterned magnetic media obtained by ion irradiation. Science 280, 1919–1922 (1998).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. Nanoscale patterning of complex magnetic nanostructures by reduction with low-energy protons. Nature Nanotech. 7, 567–571 (2012).

    Article  CAS  Google Scholar 

  13. Ross, C. A. Patterned magnetic recording media. Annu. Rev. Mater. Res. 31, 203–235 (2001).

    Article  CAS  Google Scholar 

  14. Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotech. 9, 577–587 (2014).

    Article  CAS  Google Scholar 

  15. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  16. Szoszkiewicz, R. et al. High-speed, sub-15 nm feature size thermochemical nanolithography. Nano Lett. 7, 1064–1069 (2007).

    Article  CAS  Google Scholar 

  17. Wang, D. et al. Thermochemical nanolithography of multifunctional nanotemplates for assembling nano-objects. Adv. Funct. Mater. 19, 3696–3702 (2009).

    Article  CAS  Google Scholar 

  18. Wei, Z. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328, 1373–1376 (2010).

    Article  CAS  Google Scholar 

  19. Kim, S. et al. Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates. Adv. Mater. 23, 3786–3790 (2011).

    CAS  Google Scholar 

  20. Pires, D. et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010).

    Article  CAS  Google Scholar 

  21. Fernandez-Outon, L. E., Araújo Filho, M. S., Araújo, R. E., Ardisson, J. D. & Macedo, W. A. A. Setting temperature effect in polycrystalline exchange-biased IrMn/CoFe bilayers. J. Appl. Phys. 113, 17D704 (2013).

    Article  Google Scholar 

  22. Albisetti, E. & Petti, D. Domain wall engineering through exchange bias. J. Magn. Magn. Mater. 400, 230–235 (2016).

    Article  CAS  Google Scholar 

  23. Algré, E., Gaudin, G., Bsiesy, A. & Nozières, J. Improved patterned media for probe-based HAMR. IEEE Trans. Magn. 41, 2857–2859 (2005).

    Article  Google Scholar 

  24. Miao, L., Stoddart, P. R. & Hsiang, T. Y. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording. Nanotechnology 25, 295202 (2014).

    Article  Google Scholar 

  25. King, W. P., Bhatia, B., Felts, J. R., Kim, H. J. & Kwon, B. Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transf. XVI, 287–326 (2013).

    Article  Google Scholar 

  26. Wu, A. Q. et al. HAMR areal density demonstration of 1 + Tbpsi on spinstand. IEEE Trans. Magn. 49, 779–782 (2013).

    Article  CAS  Google Scholar 

  27. Saito, J., Sato, M., Matsumoto, H. & Akasaka, H. Direct overwrite by light power modulation on magneto-optical multi-layered media. Jpn J. Appl. Phys. 26, 155–159 (1987).

    Article  Google Scholar 

  28. Stanciu, C. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    Article  CAS  Google Scholar 

  29. O'Grady, K., Fernandez-Outon, L. E. & Vallejo-Fernandez, G. A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883–899 (2010).

    Article  CAS  Google Scholar 

  30. Petti, D. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).

    Article  Google Scholar 

  31. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nature Mater. 13, 367–374 (2014).

    Article  CAS  Google Scholar 

  32. Prejbeanu, I. L. et al. Thermally assisted MRAMs: ultimate scalability and logic functionalities. J. Phys. D 46, 074002 (2013).

    Article  Google Scholar 

  33. Papusoi, C. et al. Reversing exchange bias in thermally assisted magnetic random access memory cell by electric current heating pulses. J. Appl. Phys. 104, 013915 (2008).

    Article  Google Scholar 

  34. Camley, R. E. et al. High-frequency signal processing using magnetic layered structures. J. Magn. Magn. Mater. 321, 2048–2054 (2009).

    Article  CAS  Google Scholar 

  35. Kim, S.-K., Lee, K.-S. & Han, D.-S. A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides. Appl. Phys. Lett. 95, 082507 (2009).

    Article  Google Scholar 

  36. Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nature Commun. 5, 4700 (2014).

    Article  CAS  Google Scholar 

  37. Krawczyk, M. & Grundler, D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J. Phys. Condens. Matter 26, 123202 (2014).

    Article  CAS  Google Scholar 

  38. Csaba, G., Papp, A. & Porod, W. Spin-wave based realization of optical computing primitives. J. Appl. Phys. 115, 17C741 (2014).

    Article  Google Scholar 

  39. Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

    Article  CAS  Google Scholar 

  40. Gubbiotti, G. et al. Collective spin waves on a nanowire array with step-modulated thickness. J. Phys. D 47, 105003 (2014).

    Article  Google Scholar 

  41. Tacchi, S. et al. Forbidden band gaps in the spin-wave spectrum of a two-dimensional bicomponent magnonic crystal. Phys. Rev. Lett. 109, 137202 (2012).

    Article  CAS  Google Scholar 

  42. Kalinikos, B. A. Excitation of propagating spin waves in ferromagnetic films. IEE Proc. H 127, 4–10 (1980).

    CAS  Google Scholar 

  43. Brächer, T. et al. Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures. Appl. Phys. Lett. 102, 2011–2016 (2013).

    Article  Google Scholar 

  44. Vogt, K. et al. Realization of a spin-wave multiplexer. Nature Commun. 5, 3727 (2014).

    Article  CAS  Google Scholar 

  45. Urazhdin, S. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech. 9, 509–513 (2014).

    Article  CAS  Google Scholar 

  46. Stancil, D. D. & Prabhakar, A. Spin Waves Theory and Applications (Springer, 2009).

    Google Scholar 

  47. Schneider, T. et al. Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008).

    Article  Google Scholar 

  48. Carroll, K. M. et al. Parallelization of thermochemical nanolithography. Nanoscale 6, 1299–1304 (2014).

    Article  CAS  Google Scholar 

  49. Nikulina, E., Idigoras, O., Vavassori, P., Chuvilin, A. & Berger, A. Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition. Appl. Phys. Lett. 100, 142401 (2012).

    Article  Google Scholar 

  50. Madami, M., Gubbiotti, G., Tacchi, S. & Carlotti, G. in Solid State Physics Vol. 63 (eds Camley, R. E. & Stamps, R. L.) 79–150 (Academic, 2012).

    Google Scholar 

Download references

Acknowledgements

E.A. thanks K. Carroll, L. Xi and P. Sarti for discussions. M.M. and S.T. thank G. Carlotti for discussions. E.A. and E.R. acknowledge the support of the Office of Basic Energy Sciences of the US Department of Energy (DE-FG02-06ER46293). E.R. acknowledges partial support from the National Science Foundation (NSF; grant no. CMMI 1436375). E.A. and D.P. acknowledge support from Cariplo project UMANA (project no. 2013-0735). R.B. acknowledges support from Cariplo project MAGISTER (project no. 2013-0726). M.M. and S.T acknowledge support from the Ministero Italiano dell'Università e della Ricerca (MIUR) under the PRIN2010 project (no. 2010ECA8P3). M.P. and P.V. acknowledge support from the Basque Government (program no. PI_2015_1_19) and (M.P.) from the Spanish Ministry of Economy Competitiveness (grant no. BES-2013-063690). J.C. acknowledges partial support from the National Science Foundation (NSF; grant no. PHYS 0848797). This work was partially performed at Polifab, the micro- and nanofabrication facility of Politecnico di Milano.

Author information

Authors and Affiliations

Authors

Contributions

E.A., with the help of D.P., conceived and designed the experiments. E.R. and R.B. coordinated and supervised the research. E.A. performed patterning experiments, MFM characterization and simulations. D.P. fabricated the samples. W.P.K. provided the thermal SPM tips. E.A., M.P., P.V. and R.B. performed MOKE characterization. E.A. and D.P. fabricated the samples for μ-BLS measurements. M.M. and S.T. performed μ-BLS measurements. A.P., G.C. and W.P. performed the simulation of the magnonic structures. E.A., D.P., M.M., S.T., P.V., E.R. and R.B. wrote the manuscript. All authors contributed to discussions regarding the research.

Corresponding authors

Correspondence to E. Albisetti, E. Riedo or R. Bertacco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7131 kb)

Supplementary information

Supplementary Movie 1 (AVI 15253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albisetti, E., Petti, D., Pancaldi, M. et al. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotech 11, 545–551 (2016). https://doi.org/10.1038/nnano.2016.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing