Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways

Abstract

Nanoscale drug delivery vehicles can facilitate multimodal therapies of cancer by promoting tumour-selective drug release. However, few are effective because cancer cells develop ways to resist and evade treatment. Here, we introduce a photoactivable multi-inhibitor nanoliposome (PMIL) that imparts light-induced cytotoxicity in synchrony with a photoinitiated and sustained release of inhibitors that suppress tumour regrowth and treatment escape signalling pathways. The PMIL consists of a nanoliposome doped with a photoactivable chromophore (benzoporphyrin derivative, BPD) in the lipid bilayer, and a nanoparticle containing cabozantinib (XL184)—a multikinase inhibitor—encapsulated inside. Near-infrared tumour irradiation, following intravenous PMIL administration, triggers photodynamic damage of tumour cells and microvessels, and simultaneously initiates release of XL184 inside the tumour. A single PMIL treatment achieves prolonged tumour reduction in two mouse models and suppresses metastatic escape in an orthotopic pancreatic tumour model. The PMIL offers new prospects for cancer therapy by enabling spatiotemporal control of drug release while reducing systemic drug exposure and associated toxicities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concepts of spatiotemporal-synchronized combination therapy using PMILs.
Figure 2: Synthesis and characterization of a benzoporphyrin–XL184 PMIL.
Figure 3: Structural imaging of NP[XL184] encapsulation and XL184 photorelease from PMILs.
Figure 4: MET inhibition enhancement of PDT-induced cancer cell death in vitro using PMILs.
Figure 5: Prolonged tumour reduction in vivo with a single cycle of PMIL-treatment.
Figure 6: Antivascular and antimetastatic effects using a single PMIL-treatment cycle in vivo.

References

  1. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R. & Tsourkas, A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338, 903–910 (2012).

    Article  CAS  Google Scholar 

  2. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  3. Cui, S. et al. In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstruct. ACS Nano 7, 676–688 (2013).

    Article  CAS  Google Scholar 

  4. Carter, K. A. et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nature Commun. 5, 3546 (2014).

    Article  Google Scholar 

  5. Sennino, B. & McDonald, D. M. Controlling escape from angiogenesis inhibitors. Nat. Rev. Cancer 12, 699–709 (2012).

    Article  CAS  Google Scholar 

  6. Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013).

    Article  CAS  Google Scholar 

  7. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  Google Scholar 

  8. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231 (2009).

    Article  Google Scholar 

  9. Gorski, D. H. et al. Blockade of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 59, 3374–3378 (1999).

    CAS  Google Scholar 

  10. Tran, J. et al. A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl Acad. Sci. USA 99, 4349–4354 (2002).

    Article  CAS  Google Scholar 

  11. Justinger, C. et al. Increased growth factor expression after hepatic and pancreatic resection. Oncol. Rep. 20, 1527–1531 (2008).

    Google Scholar 

  12. Ferrario, A. et al. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res. 60, 4066–4069 (2000).

    CAS  Google Scholar 

  13. Solban, N. et al. Mechanistic investigation and implications of photodynamic therapy induction of vascular endothelial growth factor in prostate cancer. Cancer Res. 66, 5633–5640 (2006).

    Article  CAS  Google Scholar 

  14. Hage, C. et al. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer. Cell Death Dis. 4, e627 (2013).

    Article  CAS  Google Scholar 

  15. Gherardi, E., Birchmeier, W., Birchmeier, C. & Vande Woude, G. Targeting MET in cancer: rationale and progress. Nat. Rev. Cancer 12, 89–103 (2012).

    Article  CAS  Google Scholar 

  16. Sennino, B. et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2, 270–287 (2012).

    Article  CAS  Google Scholar 

  17. Sennino, B., Ishiguro-Oonuma, T., Schriver, B. J., Christensen, J. G. & McDonald, D. M. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice. Cancer Res. 73, 3692–3703 (2013).

    Article  CAS  Google Scholar 

  18. Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B. & Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–743 (1999).

    CAS  Google Scholar 

  19. Davis, M. E., Chen, Z. G. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  20. Makadia, H. K. & Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011).

    Article  CAS  Google Scholar 

  21. Hines, D. J. & Kaplan, D. L. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit. Rev. Ther. Drug Carrier Syst. 30, 257–276 (2013).

    Article  CAS  Google Scholar 

  22. Thompson, D. H., Gerasimov, O. V., Wheeler, J. J., Rui, Y. & Anderson, V. C. Triggerable plasmalogen liposomes: improvement of system efficiency. Biochim. Biophys. Acta 1279, 25–34 (1996).

    Article  Google Scholar 

  23. Elisei, R. et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 31, 3639–3646 (2013).

    Article  CAS  Google Scholar 

  24. Li, C. et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141, 2218–2227.e5 (2011).

    Article  CAS  Google Scholar 

  25. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    Article  CAS  Google Scholar 

  26. Chen, B., Pogue, B. W., Hoopes, P. J. & Hasan, T. Combining vascular and cellular targeting regimens enhances the efficacy of photodynamic therapy. Int. J. Radiat. Oncol. Biol. Phys. 61, 1216–1226 (2005).

    Article  CAS  Google Scholar 

  27. Fingar, V. H. et al. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br. J. Cancer 79, 1702–1708 (1999).

    Article  CAS  Google Scholar 

  28. Kurohane, K. et al. Photodynamic therapy targeted to tumor-induced angiogenic vessels. Cancer Lett. 167, 49–56 (2001).

    Article  CAS  Google Scholar 

  29. Schmidt-Erfurth, U. & Hasan, T. Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv. Ophthalmol. 45, 195–214 (2000).

    Article  CAS  Google Scholar 

  30. Huggett, M. T. et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer 110, 1698–1704 (2014).

    Article  CAS  Google Scholar 

  31. Kessel, D. & Luo, Y. Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell. Death Differ. 6, 28–35 (1999).

    Article  CAS  Google Scholar 

  32. Kessel, D. Death pathways associated with photodynamic therapy. Med. Laser Appl. 21, 219–224 (2006).

    Article  Google Scholar 

  33. Duska, L. R., Hamblin, M. R., Miller, J. L. & Hasan, T. Combination photoimmunotherapy and cisplatin: effects on human ovarian cancer ex vivo. J. Natl Cancer Inst. 91, 1557–1563 (1999).

    Article  CAS  Google Scholar 

  34. Rizvi, I. et al. Synergistic enhancement of carboplatin efficacy with photodynamic therapy in a three-dimensional model for micrometastatic ovarian cancer. Cancer Res. 70, 9319–9328 (2010).

    Article  CAS  Google Scholar 

  35. Celli, J. P., Solban, N., Liang, A., Pereira, S. P. & Hasan, T. Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines. Lasers Surg. Med. 43, 565–574 (2011).

    Article  Google Scholar 

  36. del Carmen, M. G. et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl Cancer Inst. 97, 1516–1524 (2005).

    Article  CAS  Google Scholar 

  37. Hlatky, L., Hahnfeldt, P. & Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn't tell us. J. Natl Cancer Inst. 94, 883–893 (2002).

    Article  Google Scholar 

  38. Spring, B. Q. et al. Efficient measurement of total tumor microvascularity ex vivo using a mathematical model to optimize volume subsampling. J. Biomed. Opt. 18, 096015 (2013).

    Article  Google Scholar 

  39. Yakes, F. M. et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol. Cancer Ther. 10, 2298–2308 (2011).

    Article  CAS  Google Scholar 

  40. Chang, S. K., Rizvi, I. & Solban, N. In vivo optical molecular imaging of vascular endothelial growth factor for monitoring cancer treatment. Clin. Cancer Res. 14, 4146–4153 (2008).

    Article  CAS  Google Scholar 

  41. Tardi, P. et al. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leuk. Res. 33, 129–139 (2009).

    Article  CAS  Google Scholar 

  42. Dromi, S. et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin. Cancer Res. 13, 2722–2727 (2007).

    Article  CAS  Google Scholar 

  43. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    Article  CAS  Google Scholar 

  44. Spring, B. Q. et al. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc. Natl Acad. Sci. USA 111, E933–E942 (2014).

    Article  CAS  Google Scholar 

  45. Cheng, J. et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28, 869–876 (2007).

    Article  CAS  Google Scholar 

  46. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  47. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  48. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  Google Scholar 

  49. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  50. Larson, M. G. Analysis of variance. Circulation 117, 115–121 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Watson (W. M. Kreck Microscopy Facility at the Whitehead Institute, Massachusetts Institute of Technology) for providing ionized carbon coated grids; E. Oliva (Department of Pathology at Massachusetts General Hospital) for expert histopathologic review of tissue sections; G. Orbaid for a critical reading; and, A. Villanueva for assistance in preparing a 3D render of a PMIL cryo-EM tomogram. This work was supported by National Institutes of Health Grants R01 CA156177 (to T.H.), R01-CA160998 (to T.H.), and P01-CA084203 (to B.W.P., S.P.P. and T.H.) and F32-CA144210 (to B.Q.S.).

Author information

Authors and Affiliations

Authors

Contributions

B.Q.S., R.B.S., L.Z.Z., and T.H. conceived and designed experiments. B.Q.S., R.B.S., L.Z.Z., Z.M., R.W., M.E.S., and E.V. performed experiments. R.B.S. synthesized the nanomaterials. B.Q.S., R.B.S. and E.V. developed methodology and performed data analysis. D.A.S. contributed to statistical analysis of the data. B.Q.S., R.B.S., L.Z.Z., and T.H. prepared the manuscript. B.W.P., S.P.P. and E.V. contributed to experimental design and manuscript preparation. All authors contributed to editing the final manuscript.

Corresponding author

Correspondence to Tayyaba Hasan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spring, B., Bryan Sears, R., Zheng, L. et al. A photoactivable multi-inhibitor nanoliposome for tumour control and simultaneous inhibition of treatment escape pathways. Nature Nanotech 11, 378–387 (2016). https://doi.org/10.1038/nnano.2015.311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.311

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research